Proposal

for

Inception and Establishment of New M. Sc. Program

M. Sc. Chemistry (Specialization in Functional Materials)

Curriculum

(Under Credit and Semester System)

DEPARTMENT OF CHEMISTRY

SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES

UNIVERSITY OF KERALA

I. TITLE OF THE PROGRAMME:

The programme shall be called **Master of Science** (M.Sc.) Chemistry (Specialization in Functional Materials)

II. ABOUT THE COURSE:

Master of Science (M.Sc.) Chemistry (Specialisation in Functional Materials) is a highly specialised multidisciplinary course in applied Chemistry. The course will focus on the science and technology related to various functional materials focusing on organic functional materials. The course has immense job potential in industries and research organizations working on all kinds of materials in India and abroad. The syllabus of the said program is envisaged to ensure eligibility and equivalency for the new course with that of existing M.Sc. Chemistry program of University of Kerala by matching 80 percentage of the syllabus of the new course with that of the M.Sc. Chemistry and the rest 20 % on advanced topics in Functional materials.

The curriculum and detailed Syllabus will be submitted to the Academic committee of CSS for their approval.

- **III. ELIGIBILITY FOR ADMISSION**: A pass in B.Sc. Chemistry as core subject with Mathematics as one of the subjects, from University of Kerala or equivalent from other Universities
- IV. ADMISSION CRITERIA: The admission is made on the basis of the performance in entrance test (objective type/ short answer questions) based on the B.Sc. Chemistry syllabus of the University of Kerala. Admission to the said M.Sc. Course will follow the rules and regulations, which are currently in force in the CSS regulations of University of Kerala for admission to postgraduate course. Selection of the students will be made from the rank list of the entrance examination for M.Sc. Chemistry conducted by CSS.
- V. STUDENT INTAKE :6 Students only (Due to laboratory space constraint in conducting common practical in the first two semesters.)
- VI. **DURATION OF THE COURSE:** Two years course with Four Semesters, each of 6 months.
- **VII. SCHEME OF CLASSES:** Every semester will have the course distribution with appropriate number of theory and practical's. The fourth semester will accommodate the project work also.
- **VIII. PROJECT WORK:** Every candidate must do a project work in the 4th semester under a supervisor (approved by the Course Coordinator) in the arena of functional materials. The

project thesis should be carried out either at nationally renowned institutions, universities OR at relevant industries.

IX. FEE STRUCTURE:

X. CURRICULUM

M.Sc. CHEMISTRY

(Specialization in Functional Materials)

DEPARTMENT OF CHEMISTRY SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES UNIVERSITY OF KERALA

Programme Objectives:

- To raise the academic and intellectual standards of the student in such a way that after the completion of the programme the student will be equipped with knowledge in various topics in core Chemistry and specialized knowledge in the growing area of functional materials with focus on organic functional materials.
- To train the students to improve their practical knowledge in core topics of Chemistry during the first three semesters and to impart special practical skills in the area of materials in 3rd and 4th semsters.
- To pave way for overall development of students by providing ground for improving their leadership qualities, communication skills, extra-curricular abilities, interpersonal relationships and civic sense.
- To mould the students so that they can be competent enough in order to clear national and international level examinations which determine their career.
- To groom the students to become responsible citizens to serve the nation.

Learning Outcomes-based Curriculum Framework (LOCF) for Post-graduate Programme

M.Sc. Programme in Chemistry

(Specialization in Functional Materials)

UNIVERSITY OF KERALA Department of Chemistry

PREAMBLE

The role of higher education is vital in securing the gainful employment and providing further access to higher education comparable to the best available in the world-class institutions elsewhere. The improvement in the quality of higher education, therefore, deserves to be given tom-most priority to enable the young generation of students to acquire skill, training and knowledge to enhance their thinking, comprehension and application abilities and prepare them to compete, succeed and excel globally. Sustained initiatives are required to reform the present higher education system for improving and upgrading the academic resources and learning environments by raising the quality of teaching and standards of achievements in learning outcomes across all undergraduate programs in science, humanities, commerce and professional streams of higher education.

One of the significant reforms in the undergraduate education is to introduce the Learning Outcomesbased Curriculum Framework (LOCF) which makes it student-centric, interactive and outcome-oriented with well-defined aims, objectives and goals to achieve. The University Grants Commission (UGC) took the initiative of implementing the LOCF in the Colleges and the Universities of the country. Accordingly, the University of Kerala has decided to implement the LOCF in all its departments under the auspices of Internal Quality Assurance Cell (IQAC). A series of teacher training workshops were organised by IQAC and the office of the Credit and Semester System (CSS), and the departments have revised the syllabus accordingly, through workshops and in consultation with academic experts in the field.

GRADUATE ATTRIBUTES (GAs)

The Graduate Attributes (GAs) reflect particular qualities and abilities of an individual learner including knowledge, application of knowledge, professional and life skills, attitudes and human values that are required to be acquired by the graduates of University of Kerala. The graduate attributes include capabilities to strengthen one's professional abilities for widening current knowledge and industry-ready skills, undertaking future studies for global and local application, performing creatively and professionally, in a chosen career and ultimately playing a constructive role as a socially responsible global citizen. The Graduate Attributes define the characteristics of learners and describe a set of competencies that are beyond the study of a particular area and programme.

The GAs of University of Kerala

- Continue life-long learning as an autonomous learner
- Continuously strive for excellence in education
- Apply and nurture critical and creative thinking
- Promote sustainable development practices
- Promote co-operation over competition
- Balance rights with responsibilities
- Understand and respect diversity & difference
- Not be prejudiced by gender, age, caste, religion, or nationality.
- Use education as a tool for emancipation and empowerment of humanity

BRIEF HISTORY OF THE DEPARTMENT

The origin of the Department of Chemistry may be traced to the establishment of the University of Travancore, 1937. It currently offers 2 M.Sc. programmes and Ph.D. programme and is one of the active teaching and research Departments in the state. The M.Sc. programme was named as M.Sc. Analytical Chemistry when it started in the year 1960, and later converted to M.Sc. in Chemistry in 1997. The faculty members, past and present, and the alumni have made valuable contribution to the teaching and research in Chemistry. Their prestigious recognitions include the Vice Chairmanship of UGC, Directorship of NAAC, Vice-Chancellorships at M. G. and IGNO Universities, Humboldt Foundation Fellowships, DAAD Fellowship, Fogarty NIH Travel Award and Bhatnagar Award.

UNIVERSITY OF KERALA

DEPARTMENT OF CHEMISTRY

Syllabus for M.Sc. Chemistry (Specialization in Functional Materials)

	Programme Specific Outcomes (PSO) for M.Sc. Chemistry					
PSO 1	PSO 1 Develop a solid understanding on the fundamental principles and major concepts in the core disciplines of chemistry with the ability to analyze at an advanced level.					
PSO 2	Generate an understanding on the importance of application of Chemistry in academic, industrial, environmental and social context.					
PSO 3	Provide an intellectual training to develop a rational and rigorous scientific approach in synthesizing information and concepts.					
PSO 4	Develop skills to handle modern analytical and spectroscopic instruments.					
PSO 5	Equip the students to perform standard laboratory procedures, monitor by observation and measurement events or changes and record data.					
PSO 6	Develop research and analytical skills in basic research with the ability to undertake research in multidisciplinary teams.					
PSO 7	Provide a detailed training in written and verbal communication of scientific information and ideas.					
PSO 8	Develop ability to work independently or as part of a team in a research setting to adapt to wide range of available career option in the future.					

PSO = Program Specific (Outcome
R = Remember	
Un = Understanding	
Ap = Apply	
An = Analyse	
E = Evaluate	
C = Create	
FK = Factual Knowledge	
CK = Conceptual Knowle	dge
PK = Procedural Knowle	dge
MK = Metacognitive Kno	owledge

IV REC-CC-541 Dissertation + Discipline-Specific Elective (DE) CHE-DE-543 Applied Chemistry +	Semester	Course Code	Name of the course	Core Courses (CC)	Discipline- Specific Elective (DSE)	Generic Course (GC)	Skill Enhancement Elective (SEE)	Credits		
CHE-CC-512 Organic Chemistry I + I CHE-CC-513 Physical Chemistry I + CHE-CC-514 Inorganic Chemistry Lab I + - CHE-CC-516 Physical Chemistry Lab I + - CHE-CC-516 Physical Chemistry Lab I + - CHE-CC-516 Physical Chemistry Lab I + - CHE-CC-521 Inorganic Chemistry II + - CHE-CC-522 Organic Chemistry II + - CHE-CC-524 Inorganic Chemistry II + - CHE-CC-524 Inorganic Chemistry III + - CHE-CC-524 Inorganic Chemistry Lab II + - CHE-CC-526 Physical Chemistry Lab II + - CHE-CC-528 Advanced Organic + - CHE-CC-528 Advanced Organic + - CHE-CC-528 Organic Chemistry III + - CHE-CC-531 Inorganic Chemistry III + - A materials <t< td=""><td></td><td>Core Courses</td><td>(CC)</td><td>•</td><td></td><td>•</td><td></td><td></td></t<>		Core Courses	(CC)	•		•				
I CHE-CC-513 Physical Chemistry I + - CHE-CC-514 Inorganic Chemistry Lab I + - - CHE-CC-515 Organic Chemistry Lab I + - - CHE-CC-516 Physical Chemistry Lab I + - - CHE-CC-516 Physical Chemistry Lab I + - - CHE-CC-511 Inorganic Chemistry II + - - CHE-CC-522 Organic Chemistry II + - - CHE-CC-523 Physical Chemistry III + - - CHE-CC-524 Inorganic Chemistry Lab II + - - CHE-CC-525 Organic Chemistry Lab II + - - - CHE-CC-526 Physical Chemistry Lab II + - - - - CHE-DE-528 Advanced Organic + - - - - CHE-DE-528 Organic functional + - - - - CHE-CC-531		CHE-CC-511	Inorganic Chemistry I	+				3		
CHE-CC-514 Inorganic Chemistry Lab I + - CHE-CC-515 Organic Chemistry Lab I + - CHE-CC-516 Physical Chemistry Lab I + - CHE-CC-516 Physical Chemistry Lab I + - CHE-CC-511 Inorganic Chemistry Lab I + - Core Courses (CC) - - - CHE-CC-521 Inorganic Chemistry II + - CHE-CC-523 Physical Chemistry Lab II + - CHE-CC-524 Inorganic Chemistry Lab II + - CHE-CC-525 Organic Chemistry Lab II + - CHE-CC-526 Physical Chemistry Lab II + - CHE-CC-528 Advanced Organic + - CHE-DE-528 Advanced Organic + - CHE-DE-528 Organic functional + - A materials - - Chemistry III + - - CHE-CC-531 Inorganic Chemistry III </td <td></td> <td>CHE-CC-512</td> <td>Organic Chemistry I</td> <td>+</td> <td></td> <td></td> <td></td> <td>3</td>		CHE-CC-512	Organic Chemistry I	+				3		
CHE-CC-515 Organic Chemistry Lab I + Image: Chemistry Lab I + Students will also be taking 1 generic elective of 2 credits from IUCAFM Students will also be taking 1 generic elective of 2 credits from IUCAFM Core Courses (CC) CHE-CC-521 Inorganic Chemistry II + Image: Chemistry II + II CHE-CC-522 Organic Chemistry II + Image: Chemistry II + CHE-CC-523 Physical Chemistry Lab II + Image: Chemistry Lab II + Image: Chemistry Lab II + CHE-CC-526 Physical Chemistry Lab II + Image: Chemistry Lab III + Image: Chemistry Lab III </td <td>I</td> <td>CHE-CC-513</td> <td>Physical Chemistry I</td> <td>+</td> <td></td> <td></td> <td></td> <td>3</td>	I	CHE-CC-513	Physical Chemistry I	+				3		
CHE-CC-516 Physical Chemistry Lab I + Image: Construct Students will also be taking 1 generic elective of 2 credits from IUCAFM Core Courses (CC) Core Courses (CC) Image: Construct Structure Core Courses (CC) CHE-CC-521 Inorganic Chemistry II + Image: Construct Structure Constructure CHE-CC-522 Organic Chemistry Lab II + Image: Constructure Constructure Constructure CHE-CC-523 Physical Chemistry Lab II + Image: Constructure Constructure Constructure Constructure Constructure Chemistry Lab II + Image: Constructure Chemistry Lab II + Image: Constructure Chemistry Lab II + Image: Constructure Constructure Chemistry Lab II + Image: Constructure Chemistry Lab II + Image: Constructure		CHE-CC-514	Inorganic Chemistry Lab I	+				3		
Students will also be taking 1 generic elective of 2 credits from IUCAFM Core Courses (CC) CHE-CC-521 Inorganic Chemistry II CHE-CC-522 Organic Chemistry II CHE-CC-523 Physical Chemistry Lab II CHE-CC-524 Inorganic Chemistry Lab II CHE-CC-525 Organic Chemistry Lab II CHE-CC-526 Organic Chemistry Lab II CHE-CC-526 Organic Chemistry Lab II CHE-CC-528 Organic functional + CHE-DE-528 Organic functional + Advanced Organic CHE-DE-528 Organic functional + Advanced Organic CHE-DE-528 Organic functional + CHE-CC-531 Inorganic Chemistry III <td colspa<="" td=""><td></td><td>CHE-CC-515</td><td>Organic Chemistry Lab I</td><td>+</td><td></td><td></td><td></td><td>3</td></td>	<td></td> <td>CHE-CC-515</td> <td>Organic Chemistry Lab I</td> <td>+</td> <td></td> <td></td> <td></td> <td>3</td>		CHE-CC-515	Organic Chemistry Lab I	+				3	
Core Courses (CC) CHE-CC-521 Inorganic Chemistry II + - - CHE-CC-522 Organic Chemistry II + - - - CHE-CC-522 Organic Chemistry II + -<		CHE-CC-516	Physical Chemistry Lab I	+				3		
CHE-CC-521 Inorganic Chemistry II + - II CHE-CC-522 Organic Chemistry II + - - CHE-CC-522 Organic Chemistry II + - - - CHE-CC-523 Physical Chemistry Lab II + - - - CHE-CC-524 Inorganic Chemistry Lab II + - - - CHE-CC-525 Organic Chemistry Lab II + - - - CHE-CC-528 Physical Chemistry Lab II + - - - CHE-DE-528 Advanced Organic + - - - - CHE-DE-528 Organic functional + -			Students will also be takin	g 1 generic (elective of 2 cr	edits from I	UCAFM			
II CHE-CC-522 Organic Chemistry II + - - CHE-CC-523 Physical Chemistry Lab II + - - - CHE-CC-524 Inorganic Chemistry Lab II + - - - - CHE-CC-525 Organic Chemistry Lab II + -		Core Courses	(CC)							
CHE-CC-523 Physical Chemistry II + - - CHE-CC-524 Inorganic Chemistry Lab II + - - CHE-CC-525 Organic Chemistry Lab II + - - CHE-CC-526 Physical Chemistry Lab II + - - CHE-CC-526 Physical Chemistry Lab II + - - CHE-CC-526 Physical Chemistry Lab II + - - CHE-DE-528 Advanced Organic + - - - CHE-DE-528 Organic functional + - - - - A materials -		CHE-CC-521	Inorganic Chemistry II	+				3		
CHE-CC-524 Inorganic Chemistry Lab II + - - CHE-CC-525 Organic Chemistry Lab II + - - - CHE-CC-526 Physical Chemistry Lab II + - - - - CHE-CC-526 Physical Chemistry Lab II + -	II	CHE-CC-522	Organic Chemistry II	+				3		
CHE-CC-525 Organic Chemistry Lab II + CHE-CC-526 Physical Chemistry Lab II + CHE-DE-528 Advanced Organic + CHE-DE-528 Advanced Organic + CHE-DE-528 Organic functional + CHE-DE-528 Organic functional + <td< td=""><td></td><td>CHE-CC-523</td><td>Physical Chemistry II</td><td>+</td><td></td><td></td><td></td><td>3</td></td<>		CHE-CC-523	Physical Chemistry II	+				3		
CHE-CC-526 Physical Chemistry Lab II + CHE-DE-528 Advanced Organic + CHE-DE-528 Organic functional + A materials + CHE-DE-528 Organic functional + A materials + CHE-DE-528 Organic functional + A materials + CHE-CC-531 Inorganic Chemistry III + CHE-CC-532 Organic Chemistry III + CHE-CC-533 Physical Chemistry III + CHE-CC-534 Inorganic Chemistry III + CHE-CC-535 Functional Organic + A Materials Chemistry Lab III + CHE-CC-536 Physical Chemistry Lab III + Discipline-Specific Elective (DE) - - CHE-DE-538 Photophysical Processes + A A - - A - - - A - - - CHE-DE-539 Functional Soft materials + - A <t< td=""><td></td><td>CHE-CC-524</td><td>Inorganic Chemistry Lab II</td><td>+</td><td></td><td></td><td></td><td>3</td></t<>		CHE-CC-524	Inorganic Chemistry Lab II	+				3		
CHE-DE-528 Advanced Organic + CHE-DE-528 Organic functional + A materials + Students will also be taking 1 generic elective of 2 credits from IUCAFM Core Courses (CC) CHE-CC-531 Inorganic Chemistry III + CHE-CC-532 Organic Chemistry III + CHE-CC-533 Physical Chemistry III + CHE-CC-534 Inorganic Chemistry Lab III + CHE-CC-535 Functional Organic + A Materials Chemistry Lab - CHE-CC-536 Physical Chemistry Lab III + CHE-CC-537 Functional Organic + A Materials Chemistry Lab - CHE-CC-538 Photophysical Processes + CHE-DE-538 Photophysical Processes + A - - - A - - - CHE-DE-539 Functional Soft materials + - A - - - - IV REC-CC-541 Dissertation + -<		CHE-CC-525	Organic Chemistry Lab II	+				3		
Chemistry		CHE-CC-526	Physical Chemistry Lab II	+				3		
CHE-DE-528 Organic functional + A materials + Students will also be taking 1 generic elective of 2 credits from IUCAFM Core Courses (CC) CHE-CC-531 Inorganic Chemistry III + CHE-CC-532 Organic Chemistry III + CHE-CC-533 Physical Chemistry III + CHE-CC-534 Inorganic Chemistry Lab III + CHE-CC-535 Functional Organic + CHE-CC-536 Physical Chemistry Lab III + CHE-CC-536 Physical Chemistry Lab - CHE-CC-536 Physical Chemistry Lab III + CHE-CC-536 Physical Chemistry Lab III + Discipline-Specific Elective (DE) - - CHE-DE-538 Photophysical Processes and Applications + A - - - A - - - V Core Courses (CC) - - CHE-DE-539 Functional Soft materials + - A - - - IV REC-CC-541 Dissertat		CHE-DE-528	Advanced Organic		+			2		
A materials Students will also be taking 1 generic elective of 2 credits from IUCAFM Core Courses (CC) CHE-CC-531 Inorganic Chemistry III + - - CHE-CC-532 Organic Chemistry III + - - - CHE-CC-533 Physical Chemistry III + - - - CHE-CC-533 Physical Chemistry Lab III + - - - CHE-CC-535 Functional Organic + - - - - CHE-CC-536 Physical Chemistry Lab + -<			-							
Students will also be taking 1 generic elective of 2 credits from IUCAFM Core Courses (CC) CHE-CC-531 Inorganic Chemistry III + CHE-CC-532 Organic Chemistry III + CHE-CC-533 Physical Chemistry III + CHE-CC-534 Inorganic Chemistry III + CHE-CC-534 Inorganic Chemistry Lab III + CHE-CC-535 Functional Organic + A Materials Chemistry Lab III + Discipline-Specific Elective (DE) CHE-DE-538 Photophysical Processes + and Applications CHE-DE-539 Functional Soft materials + A Core Courses (CC) CHE-CC-541 Comprehensive Viva + IV Discipline-Specific Elective (DE) CHE-CC-541 Dissertation + Discipline-Specific Elective (DE) CHE-CC-541 Dissertation + Discipline-Specific Elective (DE) CHE-DE-543 Applied Chemistry +		CHE-DE-528	-		+			2		
Core Courses (CC) CHE-CC-531 Inorganic Chemistry III + CHE-CC-532 Organic Chemistry III + CHE-CC-533 Physical Chemistry III + CHE-CC-534 Inorganic Chemistry Lab III + CHE-CC-535 Functional Organic + CHE-CC-536 Physical Chemistry Lab III + CHE-CC-536 Physical Chemistry Lab + CHE-CC-536 Physical Chemistry Lab + CHE-CC-536 Physical Chemistry Lab + Discipline-Specific Elective (DE) + - CHE-DE-538 Photophysical Processes + and Applications + - CHE-DE-539 Functional Soft materials + A - - - CHE-CC-541 Comprehensive Viva + - A - - - - IV REC-CC-541 Dissertation + - Discipline-Specific Elective (DE) - - - CHE-DE-543 Applied Chemistry + - - <td></td> <td>A</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		A								
CHE-CC-531Inorganic Chemistry III+CHE-CC-532Organic Chemistry III+CHE-CC-533Physical Chemistry III+CHE-CC-534Inorganic Chemistry Lab III+CHE-CC-535Functional Organic+AMaterials Chemistry Lab-CHE-CC-536Physical Chemistry Lab III+Discipline-Specific Elective (DE)-CHE-DE-538Photophysical Processes+and Applications+A-CHE-CC-541Comprehensive Viva+A-IVREC-CC-541DissertationCHE-DE-538Applied Chemistry+										
CHE-CC-532Organic Chemistry III+CHE-CC-533Physical Chemistry III+CHE-CC-534Inorganic Chemistry Lab III+CHE-CC-535Functional Organic+AMaterials Chemistry LabCHE-CC-536Physical Chemistry Lab III+Discipline-Specific Elective (DE)CHE-DE-538Photophysical Processes+Aand Applications+ACHE-CC-541Comprehensive Viva+IVREC-CC-541Dissertation+Discipline-Specific Elective (DE)CHE-DE-538CHE-DE-539Functional Soft materials+A-IVREC-CC-541Core Courses (CC)CHE-CC-543Applied ChemistryCHE-DE-543Applied Chemistry				1	Γ	1				
CHE-CC-533Physical Chemistry III+CHE-CC-534Inorganic Chemistry Lab III+CHE-CC-535Functional Organic+AMaterials Chemistry Lab-CHE-CC-536Physical Chemistry Lab III+Discipline-Specific Elective (DE)CHE-DE-538Photophysical Processes+and Applications+A-CHE-DE-539Functional Soft materials+A-ChE-CC-541Comprehensive Viva+IVREC-CC-541DissertationDiscipline-Specific Elective (DE)CHE-DE-533Applied Chemistry+-								3		
CHE-CC-534 Inorganic Chemistry Lab III + CHE-CC-535 Functional Organic + A Materials Chemistry Lab CHE-CC-536 Physical Chemistry Lab CHE-CC-536 Physical Chemistry Lab III + Discipline-Specific Elective (DE) <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td></td<>								3		
III CHE-CC-535 Functional Organic + A Materials Chemistry Lab - CHE-CC-536 Physical Chemistry Lab III + Discipline-Specific Elective (DE) - CHE-DE-538 Photophysical Processes and Applications + CHE-DE-539 Functional Soft materials + A - - CHE-CC-541 Comprehensive Viva + REC-CC-541 Dissertation + Discipline-Specific Elective (DE) - - CHE-DE-543 Applied Chemistry + -								3		
IIIAMaterials Chemistry LabICHE-CC-536Physical Chemistry Lab III+IDiscipline-Specific Elective (DE)CHE-DE-538Photophysical Processes and Applications+CHE-DE-539Functional Soft materials A+Core Courses (CC)CHE-CC-541Comprehensive Viva Discertation+IVREC-CC-541Dissertation ADiscipline-Specific Elective (DE)CHE-DE-533Applied ChemistryHHCHE-DE-543Applied Chemistry								3		
A Materials Clemistry Lab CHE-CC-536 Physical Chemistry Lab III + Discipline-Specific Elective (DE) CHE-DE-538 Photophysical Processes and Applications + CHE-DE-539 Functional Soft materials + A Core Courses (CC) CHE-CC-541 Comprehensive Viva + Discipline-Specific Elective (DE) - CHE-DE-543 Applied Chemistry +			_	+				3		
Discipline-Specific Elective (DE) CHE-DE-538 Photophysical Processes and Applications + CHE-DE-539 Functional Soft materials + A Functional Soft materials + Core Courses (CC) CHE-CC-541 Comprehensive Viva + IV REC-CC-541 Dissertation + Discipline-Specific Elective (DE) + CHE-DE-543 Applied Chemistry +										
CHE-DE-538 Photophysical Processes and Applications + CHE-DE-539 Functional Soft materials + A - - Core Courses (CC) CHE-CC-541 Comprehensive Viva + IV REC-CC-541 Dissertation + Discipline-Specific Elective (DE) - - CHE-DE-543 Applied Chemistry + -				+				3		
and Applications and Applications CHE-DE-539 Functional Soft materials + A - - Core Courses (CC) - - CHE-CC-541 Comprehensive Viva + REC-CC-541 Dissertation + Discipline-Specific Elective (DE) - CHE-DE-543 Applied Chemistry +										
CHE-DE-539 Functional Soft materials + A Functional Soft materials + Core Courses (CC) CHE-CC-541 Comprehensive Viva + IV REC-CC-541 Dissertation + Discipline-Specific Elective (DE) - - - CHE-DE-543 Applied Chemistry + -		CHE-DE-538			+			3		
A Core Courses (CC) CHE-CC-541 Comprehensive Viva + IV REC-CC-541 Dissertation + Discipline-Specific Elective (DE)								2		
Core Courses (CC) CHE-CC-541 Comprehensive Viva + IV REC-CC-541 Dissertation + Discipline-Specific Elective (DE) CHE-DE-543 Applied Chemistry +			Functional Soft materials		+			3		
CHE-CC-541 Comprehensive Viva + IV REC-CC-541 Dissertation + Discipline-Specific Elective (DE) CHE-DE-543 Applied Chemistry +								1		
IV REC-CC-541 Dissertation + Discipline-Specific Elective (DE) CHE-DE-543 Applied Chemistry +				I	[2		
Discipline-Specific Elective (DE) CHE-DE-543 Applied Chemistry	IV							14		
CHE-DE-543 Applied Chemistry +				T				14		
			· · · ·		<u>ــ</u>			3		
(HE-I)E-544 $(Analytical and$		CHE-DE-543 CHE-DE-544	Analytical and		+ +			3		
Instrumental Methods			-		г			5		
TOTAL CREDITS = 20+22+21+19 = 82				RFDITS = 20	 +22+21+19 = 9	2	<u> </u>	1		

٦	Generic Cours	Generic Course (GC) offered by the department to external students									
Any Ser	CHE-GC-501	Analytical and Environmental Chemistry			+		2				

FIRST SEMESTER

1.	Semester	1					
2.	Course Title	Inorganic Chemistry I					
3.	Course Code	CHE-CC-511					
4.	Credits	3					
5.	CO: On completion of to:	f the course, students should be able	TL	KL	PSO No.		
	1. Describe the fundation and its significance	amentals of coordination chemistry e	1-R, 2-Un, 3-Ap	FK	PSO1		
	2. Describe the imp biological systems	oortance of inorganic chemistry in and process	2-Un, 3-Ap	FK, CK	PSO1, PSO2		
	3. Explain the conception on-aqueous cond	ot of acid strength and reactions in ition	2-Un, 3-AP, 4-An	FK, CK	PSO1, PSO3		
	4. Memorize and ex and halogens	1-R, 2-Un, 3-Ap	FK, CK	PSO1, PSO3			
MOD. No.	COURSE CONTENT			CO No.			
1	complexes. Coordina complexes based on Isomerism: Structura complex ions in aque overall formation co	ordination Chemistry: Types of ation number and geometry: Class coordination numbers and possible I, geometrical and optical isomerism cous solution: Formation constants. So nstants. Factors affecting stability on ability constants. Irving William orde clic effects.	sification of geometries. h. Stability of Stepwise and f complexes.		CO1		
II	theory and its limitat different ligand field tetrahedral, trigonal Teller effect. LFSE an Factors affecting th Molecular orbital th bonding in metal co without π bonds. Effe	e and Bonding in Metal Complexes: N cions. Ligand field theory: Splitting of s such as octahedral, tetragonal, so bipyramidal and square pyramidal id its calculation. Thermodynamic effi- e splitting parameter. Spectroche eory based on group theoretical a pmplexes. MO diagrams of complex- ect of π bond on the stability of the co ands such as CO, NO, CN-, R3P	d orbitals in quare planar, fields. Jahn fects of LFSE. mical series. pproach and ces with and mplex. Sigma		CO1		
111	Bioinorganic Chemis systems, structure ar of ion transport a valinomycin and crow chlorophyll a, PS I manganese complex medicine- Anticance	Chemistry: Essential and trace elements in biological CO2 cture and functions of biological membranes, mechanism port across membranes, sodium pump, ionophores, nd crown ether complexes of Na ⁺ and K ⁺ . Photosynthesis- , PS I and PS II. Z-scheme of photosynthesis. Role of pmplex in oxygen evolution. Coordination compounds in ticancer drugs: Platinum complexes- cisplatin. Various action of metal complexes with nucleic acids.					
IV	Oxygen carriers and o and hemocyanin, hen Nature of heme-diox	oxygen transport proteins-Hemoglobi nerythrin and hemovanadin, Iron-Sulp xygen binding. cooperativity in hem ort in biological systems-ferritin and	hur proteins. oglobin. Iron		CO2		

	Redox metalloenzymes-cytochromes, peroxidases and superoxide	
	dismutase and catalases. Nonredox metalloenzymes, Carboxypeptidase	
	A and Carbonic anhydrase – structure, function and mechanism of	
	action. Nitrogen Fixation nitrogenase, vitamin B12 and the vitamin B12	
	coenzymes.	
v	Acid-Base Chemistry and Chemistry in Non-aqueous Solvents: Relative	CO3
	strength of acids, Pauling rules, Lux-Flood concept, Lewis concept,	
	Measurement of acid base strength systematics of Lewis acid-base	
	interactions steric and solvation effects acid – base anomalies ,	
	Pearson's HSAB concept, acid- base strength and hardness and	
	softness, Symbiosis, theoretical basis of hardness and softness,	
	electronegativity and hardness. Chemistry in non-aqueous solvents,	
	reactions in NH3, liquid SO2, solvent character, reactions in SO2, acetic	
	acid, solvent character, reactions in CH3COOH and some other solvents.	
	Molten salts as non-aqueous solvents, solvent properties, room	
	temperature molten salts, unreactivity of molten salts, solutions of	
	metals.	
VI	Chemistry of noble gases and halogens: Early chemistry, Xenon	CO4
	fluorides and oxofluorides; Synthesis, properties, structure and	
	bonding. Xenon compounds with bonds to other elements. Chemistry	
	of Krypton and Radon. Chemistry of halogens: Halogens in positive	
	oxidation states. Interhalogen compounds, pseudohalogens and	
	polyhalide ions including polyiodide anions.	
Referen		
	Coordination Chemistry (3 rd Edn.), Banerjea, D., Asian books, 2009.	
2.	Advanced Inorganic Chemistry (6 th Edn.), Cotton, F. A. and Wilkinson, G.,	Wiley Interscience,
	New York, 1999.	
3.	Inorganic Chemistry - Principles of Structure and Reactivity (4 th Edn.), Huh	eey, J. E. Keiter, E.
	A. and Keiter, R. L., HarperCollins, New York., 1993.	
4.	Physical Inorganic Chemistry: A Coordination Chemistry approach, Kettl	e, S. F. A., Oxford
	University Press, 2000.	
5.	Principles of Bioinorganic Chemistry, Lippard, S. J. and Berg, J. M., Univer	sity Science Books,
	1994.	
	Inorganic Chemistry (5 th Edn.), Atkins, P. W. and Shriver, D. F. ,OUP, 2009.	
7.	Bioinorganic Chemistry, Bertini, I, Gray, H. B., Lippard, S. J. and Valentine, J	. S., University
	science books, 1994.	
	Inorganic Biochemistry - An Introduction (2 nd Edn.), Cowan, J. A., Wiley-VCH	
9.	Ligand Field Theory and its Applications, Figgis, B. N and Hitchman, M. A., N	Viley-India, 2010.
Additio	nal References:	
	Inorganic Chemistry, Holleman, A. F. and Wiberg, E., Academic Press, 2001	
	Concise Inorganic Chemistry (4 th Edn.), Lee, J. D., Wiley-India, 2008.	
	Inorganic Chemistry, Purcell, K.F and Kotz, J. C., Holt-Saunders, 2010.	
	Concepts and Models of Inorganic Chemistry (3 rd Edn.),Reddy, B. E. Douglas	s, D. H. McDanial
	and .Alexander, J. J, John Wiley, 2001.	
5.	Bioinorganic Chemistry, Reddy, K. H., New Age international, 2003	

FIRST SEMESTER M.Sc. DEGREE EXAMINATION Month Year Branch: CHEMISTRY CHE-CC-511: INORGANIC CHEMISTRY I

Time: 3 hours

Max. Marks: 60

SECTION-A

Answer any 10 questions. Each question carries 2 marks

- 1. What is meant by step-wise formation constant of a complex? In the formation of the complex [ML₄] show that $\beta_4 = K_1.K_2.K_3.K_4$.
- 2. Give a note on Irving William order of stability.
- 3. Which ligand makes higher Δ_0 value; H₂O or OH⁻ ? Justify your answer.
- 4. Which one exhibits higher nephelauxetic effect; NH_3 or CN^- ? Substantiate your answer.
- 5. Give a short note on ionophores.
- 6. Trans-platin has no anticancer activity, though Cis-platin is a promising anticancer drug. Why ?
- 7. Distinguish between ferrintin and transferrin.
- 8. Discuss the role of P cluster in Nitrogenase.
- 9. Indicate the conjugate acids of the following : i) NH_3 ii) $NH2^-$ iii) H_2O iv) HI
- 10. 'Liquid ammonia is called a levelling solvent.' Justify the statement.
- 11. Why are the O-F bonds in O_2F_2 longer than OF_2 whereas the O-O bond in O_2F_2 is short compared with that in H_2O_2 ?
- 12. Draw the structure of XeF₂, XeF₄ and XeF₆.

SECTION-B

Answer any 6 questions. Each question carries 4 marks

- 13. Draw the structure of Cis and trans dichloro-bis(ethylene diamine)Cobalt(III) ion. Which isomer is optically active ? Justify your answer.
- 14. Chelate effect is an entropy effect. Justify the statement.
- 15. Discuss about the various factors affecting the magnitude of splitting parameter (Δ) in complexes.
- 16. What is valinomycin ? How can you explain that valinomycin binds K^+ more tightly than Na^+ ?
- 17. Discuss the structural features and function of Catalase.
- 18. Give a brief note on Iron-Sulphur proteins.
- 19. With suitable examples, explain the utility of molten salts as solvent in reactions.
- 20. Give the structure of IF₅. How does IF₅ reacts with XeF₂ and XeF₄ ? Liquid IF₅ conduct electricity. What is the reason behind it ?

SECTION-C

Answer any 2 questions. Each question carries 8 marks

- 21. Discuss the merits of MOT over CFT and sketch the MO diagram for $[CoF_6]^{3-}$ and predict its magnetic behavior.
- 22. i) Describe the classification of complexes based on co-ordination numbers and geometry.
 - ii) Compare the structure and function of any two zinc containing enzymes in mammals.

(4 + 4)

- 23. Illustrate the z-scheme of photosynthesis.
- 24. i) Discuss the effect of substituents on the strength of Lewis acids and bases.
 - ii) Give an account of polyhalide ions. (4+4)

1.	Semester	1
2.	Course Title	Organic Chemistry I

3.	Course	e Code	CHE-CC-512			
4.	Credit	S	3			
5.	CO On co	TL	KL	PSO No.		
	1. Rec	cognize and p	1-R, 2-Un	FK, CK	I, III	
	2. Ass	ess the stabil	ity of various conformers of acyclic and cyclic systems	3-Ap, 4-An	FK, CK	I, II
	3. Ide	ntify and dif	fferentiate prochirality and chirality at centers, axis,	3-Ap, 4-An	FK, CK	I, III
	planes and helices and designate the stereocenters and prochiral centers2-Un, 3-Ap4. Appreciate and apply the stereochemical implications on addition, substitution and elimination reactions2-Un, 3-Ap5. Apply the reactivity of carbonyl groups towards base mediated 2-Un, 3-Ap2-Un, 3-Ap					
						II, III
					FK, CK	II, III
					СК	Ш
MOD No	DDULE COURSE CONTENT					No.
	I Structural Organic Chemistry - Aromaticity, Hückel's rule, criteria for aromaticity, annulenes, mesoionic compounds, metallocenes, cyclic carbocations and carbanions, anti- and homo- aromatic systems, Fullerenes, Carbon nanotubes and graphenes, Physical organic chemistry - kinetic and thermodynamic control of reactions, Hammond's postulate, kinetic isotope effects with examples, linear free energy relationships, Hammett and Taft equations, Curtin-Hammett principle, Catalysis by acids and bases with examples like acetal, cyanohydrin, ester formations and hydrolysis reactions, Acidity and Basicity of organic compounds, pKa values, kinetic and thermodynamic acidity. Hard and soft acids and bases - HSAB principle and its applications.				2, 3	
	II Stereochemistry of Organic Molecules - Conformational analysis of alkanes and cycloalkanes, Effect of conformation on reactivity of cyclohexane and decalin derivatives. Anomeric effect, Sawhorse and Newmann projections, Geometrical isomers, E-Z nomenclature, Molecular symmetry and chirality, chiral centres – enantiomers and diastereomers, CIP rules. R and S, threo, erythro nomenclatures, non-carbon chiral centres, Axial and Planar chirality, Atropisomerism, Helicity, stereochemical descriptors for chiral axis and planes, Prostereoisomerism, topicity, Stereoselective and stereospecific reactions, regioselective and regiospecific reactions, calculation of enantiomeric excess and specific rotation, Chiral separation methods, Chiral shift reagents, non-carbon chirality.					
I	 III Reactions of sp3 Carbons - Stereochemical and mechanistic aspects of SN reactions, Effect of solvent, leaving group and substrate structure, Neighbouring group participation, Non-classical carbocations and ion pairs in SN reactions, Ambident nucleophiles and substrates, SN' and SNi reactions, Isotopic and salt effects, Formation and ring opening of epoxides in cyclohexyl systems (FürstPlattner rule). Elimination reactions leading to C=C bond formation. E1, E2 and E1CB mechanisms, Hoffman and Saytzeff modes of elimination, Effect of leaving group and substrate structure, Pyrolytic eliminations – Chugaev and Cope eliminations, Cis eliminations. Substitution vs elimination. IV Reactions of sp2 Carbon and Aromatic Systems - Electrophilic addition to C=C - 					

	Mechanistic and stereochemical aspects of bromine addition, halolactonization, hydrogenations, hydroborations, epoxidation including Sharpless asymmetric epoxidation, hydroxylations including Woodward-Prevost hydroxylations, oxy-mercuration and de-mercuration and singlet carbene addition. Stereochemistry of addition to C=O systems. Cram, Cram-chelate, Felkin-Anhand Houk models. Zimmerman-Traxler transition states, Desymmetrization and kinetic resolution, Methods of determining absolute configuration, Aromatic electrophilic and nucleophilic substitutions, Electronic and steric effects of substituents. SN1, SN4, SN4, Baseyan and CDN1 mechanism and their suideness.			
V	SNAr, Benzyne and SRN1 mechanism and their evidences. Reactions of carbonyl compounds - Aldol and mixed-aldol condensations, Claisen, Reformatsky, Perkin, Stobbe, Darzens, Knoevenagel, Dieckmann, Thorpe, Henry and Mannich reactions, reductions of carbonyl group (Clemmenson and Wolff- Kishner), Addition of cyanide, ammonia, alcohol and Grignard reagents, Structure, synthesis and reactions of α,β – unsaturated carbonyl compounds, Michael addition and Robinson annulation, Prins reaction.	5		
VI	Rearrangement Reactions - Structure, stability and formation of carbocations and carbanions, Classical and non-classical carbocations, Rearrangements including Wagner-Meerwein, Pinacol-Pinacolone, Dienone-Phenol, Beckmann and Benzidine, Baeyer-Villiger oxidation, Demjanov ring expansions, Favorskii and Benzilic acid rearrangements, Ramburg-Buckland reaction, Peterson and Julia olefinations, Structure and synthesis of phosphorus, sulphur and nitrogen ylides, Reactions of ylides including Wittig reaction. Structure, stability and formation of carbenes, nitrenes and benzynes. Bamford-Stevens reaction, Simmon-Smith reaction, Shapiro reaction, Wolff rearrangement, Arndt-Eistert homologation, Hofmann, Curtius, Lossen and Schmidt rearrangements. Addition and insertion reactions of benzynes.	6		
2. Smit 3. Kalsi 4. Nasi Inter	r Sykes "A guidebook to mechanism in organic chemistry", Longman, 6thEdn. h, M. B. and March, J. "March's Advanced Organic Chemistry", 6thEdn, Wiley. 2007. , P. S. "Stereochemistry and Reaction Mechanisms", Wiley Eastern, 2005 puri, D. "Stereochemistry of Organic Compounds – Principles and Applications", 3rd rnational, 2018 Norman and JM Coxon, "Principles of Organic Synthesis", CRC Press, 3rd En, 1993.	d Edn, New Age		
1. Clay 2. Care				
3. K. Pe	. K. Peter, C. Vollhardt and NE Schore, "Organic Chemistry – Structure and Function", Freeman, 2003			
1987 5. PS K 6. Moo				

Model Question Paper

FIRST SEMESTER M.Sc. DEGREE EXAMINATION 2020

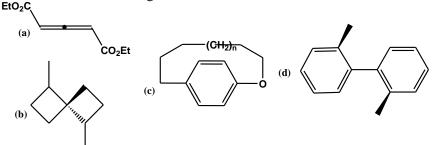
Branch: CHEMISTRY

CHE-CC-512 :ORGANIC CHEMISTRY I

Time: 3 hours

Max. Marks: 60

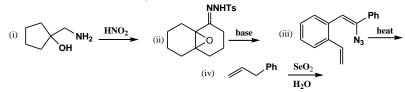
SECTION-A

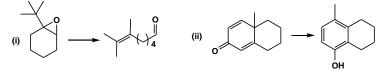

Answer any 10 questions. Each question carries 2 marks

- 1. Arrange the following in the increasing order of aromaticity and justify: furan, pyridine, thiophene and pyrrole.
- 2. Depict the structure of the product formed when S-2-butanol is treated with thionyl chloride. Explain the mechanism of the reaction by providing suitable illustration.
- 3. "Hydroboration oxidation follows anti-Markownikov addition". Justify the statement providing suitable example.
- 4. Arrange the following in the increasing order of nucleophilicity and justify your answer: 4-nitro phenol, phenol, 3-chloro phenol and 4-methyl phenol
- 5. Predict the product/products with correct stereochemistry formed when bromine adds to cis-2butene.
- 6. Compare the E1 and E1cB mechanisms providing suitable examples.
- 7. Depict the conformation of *cis*-4-*t*-butyl-1-methyl cyclohexane and *cis*-decalin
- 8. What is atropisomerism?. Illustrate with an example.
- 9. Suggest and illustrate a method to convert bromo benzene to biphenyl.
- 10. Suggest methods to convert cyclobutanone to γ -lactam and γ -lactone.
- 11. Predict the products when cyclohex-2,3-enone reacts separately with sulphoniumylide and sulphoxoniumylide.
- 12. Apply Cram's rule to identify the major product formed by the reaction of methyl magnexium bromide with (S)-2-phenyl propionaldehyde.

SECTION-B

Answer any 6 questions. Each question carries 4 marks


13. Provide R/S notation for the following molecules.

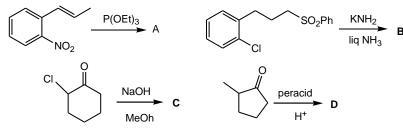

- 14. 2(R)-Hydroxy, 3(S) bromo butane when treated with a small amount of base yields compound A. Identify the structure of compound A and show the correct stereochemistry, reaction scheme and mechanism.
- 15. In each pair of similar substitution reactions below write the structures of the products of each; indicating which reaction is likely to have the faster rate and why.

i) Phenylmethyl chloride (benzyl chloride) or 2-phenylethyl chloride with silver acetate in methanol ii) Sodium cyanide in acetone with 1-methyl-1-idomethyl-cyclopentane or 2-cycopentylethyl iodide iii) 2-phenyl-2-propanol or 3-phenyl-2,4-dimethyl-3-pentanol on warming in concentrated HBr iv) Sodium salt of methyl malonate and ethyl iodide in methanol or in acetonitrile (CH₃CN)

- 16. Explain briefly Curtius, Hoffmann, Lossen and Schmidt rearrangements.
- 17. Predict the products from the following reactions

18. The following reactions take place in acid medium: Illustrate the mechanisms involved.

- 19. Predict the products when cyclohex-2,3-enone reacts separately with sulphonium ylide, sulphoxonium ylide, SeO₂ and CH₂I₂-Zn.
- 20. Explain the aromaticity in annulenes with examples.


SECTION-C

Answer any 2 questions. Each question carries 8 marks

- 21 i) Distinguish between stereoselective and stereospecific reactions with suitable examplesii) How can hyperconjugation explain the stability of substituted alkenes? (4 +4)
- 22. i) In the following reactions, decide whether it is likely to proceed by S_N1 or S_N2 mechanisms. Predict the products including the stereochemistry
 - a) S-1-Pheny1-1-bromobutane + NaCN in dimethylformamide
 - b) S-1-Pheny1-1-bromobutane + AgOAc in ethanol
 - ii) Give 2 mechanisms for nucleophilic aromatic substitutions providing suitable examples.

$$(4+4)$$

23. Identify **A** – **D** providing the mechanism for each reaction.

24. Depict the schemes with reagents and illustrate the mechanisms of Perkin, Stobbe, Dieckmann and Knoevenagel reactions.

1.	Semes	ster	1				
2.	Course	e Title	Physical Chemistry I				
3.	Course	Course Code CHE-CC-513 Credits 3					
4.	Credit	S	3				
5.	CO :			TL	KL	PSO	
	On co	mpletion of the	e course, students should be able to:			No.	
	1. Des	cribe and justi	fy the importance of Quantum Mechanics	1-R; 5-E	FK,CK	T	
	2. Und	lerstand and a	oply various postulates in deriving property	2-Un;3-	СК,РК	1, 11	
	opei	rators and Schr	odinger equation Ap				
			inger equation of particle in a box, HO, RR and H-	1-R; 2-	FK,CK	I, II, III	
		n and interpret		Un			
			etry elements and operators and determine the	1-R; 5-E	СК,РК	1, 11, 111	
		ect point group					
			racter table and apply this to characterize the	3-Ap; 6-	СК,РК	1, 11, 111	
			ns and hybrid orbitals.	Cr			
			is adsorption isotherms and its use in surface	2-Un; 3-	FK,CK	1, 11	
		measurement		Ар	51/		
			ncept of colloidal material and their stability for	2-Un	FK	1, 11	
		y practical use		2-Un	СК	1 11	
	o. cxp		chniques to study the surfaces	2-011	CK	I, II	
MC	DULE	COURSE CON	TENT			со	
No						No.	
	I		ution of quantum mechanics: The wave nature o		•	1,2	
			ty principle and its consequences. The postulates	•			
			ns, well-behavedness, Orthogonality theorem. O				
			: Laplacian, Hamiltonian, linear and Hermitia	•	-		
			operators and their properties. Operator algebration values. Expectation value. Time dependent		-		
			equation. Separation of variables.	uent anu i	ndependent		
	11		ble problems: Solutions of Schrodinger wave equat	ions for:		3	
		•	e particle in 1D. Particle in 1D box of infinite and		ential wells	5	
			elling. Particle in 3D box. Zero point energy and sig	•			
			njugated dyes.				
			Harmonic oscillator. Hermite equation and	Hermite	polynomials.		
			rrence formula. 3D- harmonic oscillator. Oscillato				
		vibra	tions. Selection rule for vibrational transitions.				
	III	Schrodinger e	equation in polar coordinates and exactly solvable	problems:	Solutions of	3	
		•	vave equations for				
	1. Rigid rotator. Particle on a ring. Separation of variables. Real and Imaginary						
			functions.				
			planar rigid rotator. Legendre and Associated L				
		polynomials. Rodrigue's formula. Spherical Harmonics. Polar Diagrams. Salient					
ĺ			res. Space quantization.	. استم معن			
			om. Laguerre and Associated Laguerre equatic				
			Space quantization. Zeeman effect, Uhlenbeck and Spin orbitals and Spin orbitals.		-		
		oi spiri, ster	n Gerlach experiment. Orbitals and Spin orbit	lais. Kauial	ρισυαυπτγ		

	distribution function and graphs. Selection rules for spectral transitions.	
IV		1 5
IV	Symmetry and character tables: Symmetry elements and symmetry operations. Point groups. Multiplication of operations. Conditions for a set of elements to form a group. Group multiplication table. Similarity transformation and classification of symmetry operations. Matrix representation of point group. Reducible and irreducible representations. Character of a matrix. Orthogonality theorem. Rules derived from orthogonality theorem (proof not required). Setting up of the character tables of simple groups - C2V, C2h, C3V and C4V on the basis of the rules. Reduction of reducible representations to irreducible representations. Molecular dissymmetry and optical activity. Applications of character tables to spectroscopy. Transition moment operators, vanishing integrals, determination of number of active IR and Raman lines. Application of character table to orbitals. Construction of hybrid orbitals. Construction	4,5
	of Symmetry adapted LCAO	
v	Types of surfaces. Measurements of surface pressure and surface potential. Surfactants and micelles. The gas-solid interface. Types of adsorption. Heat of adsorption. Adsorption isotherms. Gibbs adsorption equation and its verification. Langmuir isotherm. Multilayer adsorption. Freundlich isotherm. BET isotherm. Solid- liquid interface. Influence of surface tension on adsorption. Measurements of surface area of solids.Harkin-Jure method. Entropy and point B methods. Use of Langmuir isotherm and BET method. Eley-Rideal mechanism and the Langmuir-Hinshelwood mechanism	6
VI	Colloids- zeta potential, electrokinetic phenomena, sedimentation potential and streaming potential, Donnan membrane equilibrium. Emulsions: macro- and micro- emulsions; aging and stabilization of emulsions; Phase behaviour of microemulsions. Surface Enhanced Raman Scattering, Surfaces for SERS studies, Chemical enhancement mechanism, Surface selection rules, Applications of SERS. Application of low energy electron diffraction and photoelectron spectroscopy, ESCA and Auger electron spectroscopy, scanning probe microscopy, ion scattering, SEM and TEM in the study of surfaces.	7,8
Refere	nces:	
1.	Levine, I. N., "Quantum Chemistry", 7thEdition, Pearson Education Inc., 2014.	
2.	McQuarrie, D. A., "Quantum Chemistry", 2ndEdition, University Science Books, 2008.	
3.	Szabo, A.; Ostlund, N. S. "Modern Quantum Chemistry: Introduction to Advanced Electronic Structure theory", Dover Publications, 1996.	
4.	Cotton, F. A., "Chemical Applications of Group Theory", 3rd Edition, Wiley-Interscience, 1990).
5.	AlexanderA. and JohnsonP., "Colloid Science," Oxford University Press, New York, 1996.	
6. 7	Raj, G. Surface Chemistry (Adsorption), 4th Edition, Goel Publishing House, 2002. GreggS. J., "The Surface Chemistry of Solids", 2nd Edition, Chapman Hall, 1961.	
7. 8.	Jaffe, H.H.; Orchin, M., "Symmetry in Chemistry", Dover Publications, 2002.	
	balle, H.H., Ofchin, M., Symmetry in chemistry , Dover Publications, 2002.	
1.	Pillar, F. L. "Elementary Quantum Chemistry", 2nd Edition, Dover Publication, 2001.	
1. 2.	Chandra, A. K., "Introduction to Quantum Mechanics", 4th Ed, Tata McGraw-Hill, New Delhi,	2003
3.	Prasad, R. K., "Quantum Chemistry", 4thEdition, New Age International, 2009.	2005.
4.	Gopinathan M. S.; Ramakrishnan, V., "Group Theory in Chemistry" 2nd Edition, Vishal Publi 2013.	cations
5.	Somorjai, A., "Introduction to Surface Chemistry and Catalysis", 2nd Edition, Wiley-Inter 2010.	science

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, Month Year Branch: CHEMISTRY CHE-C513: PHYSICAL CHEMISTRY-I

Times: 3 Hours

Max. Marks: 60

SECTION-A

Answer any 10 questions. Each question carries 2 marks.

- 1. Prove that the Hermitian operator always has real eigen values.
- 2. Normalize the function sin(kx) and e^{ikx} in the interval x = 0 and $x = 2\pi$.
- 3. Calculate the quantum number of a particle of mass of 1g in a 10cm length box having energy kT at room temperature.
- 4. Explain the term 'degeneracy'. Give a schematic sketch of the first three energy levels obtained in particle in 3D-cubic box indicating their degeneracy.
- 5. Prove that the nonexistence of zero point energy in planar rigid rotator is not in violation of Heisenberg's uncertainty principle.
- 6. Set up the Schrodinger equation for hydrogen atom in spherical polar coordinates.
- 7. What different point groups may the biphenyl molecule belong to depending on the rotational relationship of the two rings about the C-C bonds?
- 8. Explain with an example a) Symmetry Operation (b) Symmetry element.
- 9. Discuss the effect of temperature on chemisorption.
- 10. Find out the number of collisions that would occur on a catalyst surface when it is exposed to Helium gas at 100 micropascals and 200° C.
- 11. What are the factors determining emulsion stability?
- 12. Enumerate two applications of Auger Electron Spectroscopy.

SECTION-B

Answer **any 6** questions. Each question carries **4** marks.

- 13. Explain the postulates of quantum mechanics.
- 14. Calculate the expectation value of the x-position of a particle in the state n=2 of a one-dimensional box of length L.
- 15. a) Write down the radial equation R(r) for H atom. Derive the general solution for R(r) when r is very large $(r-\infty)$ and very small $(r-\infty)$?
- 16. For the D3h point group, classify each of the representation into Raman, IR active and both Raman and IR active.

D_{3h}	Е	2C ₃	3C ₂	$\sigma_{\rm h}$	$2S_3$	$3\sigma_v$		
A1'	1	1	1	1	1	1		x ² +y ² ,z ²
A2'	1	1	-1	1	1	-1	Rz	
E'	2	-1	0	2	-1	0	(x,y)	x^2+y^2,z^2 (x ² -y ² ,xy)
A1"				-1		-1		•

A2"	1	1	-1	-1	-1	1	Z
Е"	2	-1	0	-2	1	0	(R_x, R_y) (xz, yz)

17. State the great orthogonality theorem. Explain how it is essential in constructing the character table?

- 18. A monolayer of N₂ is adsorbed on 1g of a catalyst powder at liquid nitrogentemperature. Upon warming N₂ occupied a volume of 3.86 cm^3 at 0^oC and 1 atmpressure. What is the surface area of the catalyst ? The effective area of N₂ molecule is 0.167 nm² (Given N = 6.023 E + 23)
- 19. Calculate adsorption enthalpy when a fixed volume of gas is adsorbed on a particular catalyst for following data (R=8.31 JK⁻¹ mol⁻¹)

P/torr	30	40
T(K)	200	240

20. How can you determine the type of emulsions? Explain one of the methods. **SECTION C**

Answer any two questions. Each question carries 8 marks

- 21. a) Set up and solve the Schrodinger equation of motion for a SHO. Deduce the expressions for energy.
 - b) Find the hybridization of O in H_2O using the C_2v character table.

C_2v	Е	C_2z	$\sigma_v(xy)$	$\sigma_v(yz)$			
A1	1	1	1	1	Z	x ² ,y ² ,z ²	
A2	1	1	-1	-1	Rz	xy	
B1	1	-1	1	-1	x,Ry	XZ	
B2	1	-1	-1	1	y,Rx	yz	(4+4)

(4+4)

22. a) Write down the Schrodinger equation for H-atom in spherical polar coordinates and separate the variables.

b) What is the probability of finding the electron within radius of a_0 from the nucleus (Given ground state wave function of H-atom is $(1/\pi a_0^3)^{1/2}e^{-r/a0}$) (4+4)

23. a) Discuss Gibbs adsorption equation.

b) Deduce the BET adsorption isotherm.

24. a) Calculate the expectation values of Px and Px^2 for a particle in 1-dimensional box. Rationalize the results.

b) The 1s orbital of H-atom is given by the expression $1s = (1/\pi a_0^3)^{1/2} e^{-r/a_0}$, where a_0 is the Bohr radius. Show that the most probable radius at which the electron will be found in the 1s orbital is a_0 . (4+4)

1.	Semester	1			
2.	Course Title	Inorganic Chemistry Lab I			
3.	Course Code	CHE-CC-514			
4.	Credits	3			
5.	CO: On complet	tion of the course, students should be able	TL	KL	PSO No.
	to:				
		nd on experience in inorganic experiments	З-Ар	СК, РК,	PSO5,
	• •	separation of metal ions and identification	4-An	MK	PSO6
		inary mixture			
	2. Demonstrate	e various volumetric analysis independently	4-An	CK, PK,	PSO5,
	2 Doccribo tho	principles behind various volumetric	5-E 2-Un	MK FK, CK	PSO6 PSO1,
	analysis	principies bening various volumetric	2-011	T K, CK	PSO3
MOD. No.	COURSE CONTE	I	CO No.		
I	Separation and	identification of rare/less familiar metal ion	s such as	CO1	
		e, Th, Zr, V, U and Li in their binary mixtures.			
		st analyse at least 6 samples)			
- 11	Quantitative vo	lumetric estimations of various metal ions usi	ng EDTA.	CO	2, CO3
111	Volumetric qua	ntitative estimations using ammonium vanada	ate.	CO	2, CO3
IV	Volumetric qu (Cerimetry).	antitative estimations using cerium (IV)	sulphate	CO	2, CO3
V	Quantitative vo	lumetric estimations using chloramine-T.		CO	2, CO3
VI	Volumetric quatitative estimations using potassium iodate CO2, CO3				
		t do a total of at least 8 volumetric estimation	s).		
Refere					
1.	-	West, D. M. "Analytical Chemistry: An Introdu		unders.	
2.	•	ext Book of Qualitative Inorganic Analysis", Lor	•		
3.	vogel, A. I. A Te	ext Book of Quantitative Inorganic Analysis", L	ongman.		

1.	Semester	1				
2.	Course Title	Organic Chemistry Lab I				
3.	Course Code	CHE-CC-515				
4.	Credits	3				
5.	СО		TL	KL	PSO	
	On completion of the course	, students should be able to:			No.	
		ed in organic reactions using solvent	2-	FK, PK	I, V	
	extraction (if possible)		Un,			
			4-An			
	2. Work-up organic reactions	•	3-Ap	РК	I, V	
	3. To do synthesis of solid de	rivatives of the compounds separated	1- R,	FK, PK	III, V	
			З-Ар			
		mation and re-crystallization	3-Ap	РК	I, V	
	5. Find out the Rf values of co	ompounds by TLC analysis	4-An	FK, CK,	V, VI	
				РК		
	6. Purify compounds by simp	le column chromatography	3-Ap	FK, PK	I, V	
MOD. No	COURSE CONTENT			CO No.		
I	Quantitative wet chemistry	separation of a mixture of two compone	ents by	1, 2		
	-	er. Separation of acidic component from	n basic			
	component. Identification of	• •				
II	-	mponent from neutral component. Identif	ication	1, 2		
		by functional group analysis,				
III	-	for acidic, basic and neutral componen	its like	3		
	esters, anhydrides, amides, p					
IV		method. Ordinary distillation and v	acuum	4		
v		blimation and crystallization methods. s of organic compounds using TLC. Identif	ication	5		
v		on of number of products in a reaction m		5		
	different methods for TLC vis	•	inxture,			
VI		s by column chromatography. Packing a co	olumn	6		
••		n. TLC visualization and removal of the sol		Ŭ		
	collect the pure fraction, Der	nonstration of HPLC technique.				
Refere	•	·				
		'Practical Organic Chemistry - Qualitative A	\nalvsis'		ks New	
1.	Delhi	ractical Organic Chemistry - Quantative P			NS, NEW	
2.		wal, R. "Comprehensive Practical Organic	Chang		4 0 0	

- 2. Ahluwalia, V. K. and Aggarwal, R. "Comprehensive Practical Organic Chemistry" Vol 1 & 2, Universities Press.
- 3. Bell, C. E. Taber, D. F. and Clark, A. K. "Organic Chemistry Laboratory", Thomson.
- 4. Pasto, D. J. Johnson, C. R. and Miller, M. J. "Experiments and Techniques in Organic Chemistry", Prentice Hall.

1.	Semes	ster	1			
2.	Course	e Title	Physical Chemistry Lab I			
3.	Course	e Code	CHE-CC-516			
4.	Credits 3					
5.	CO:			TL	KL	PSO No.
			e course, students should be able to:			
			ncept of solubility and apply it to calculate icients and concentration of unknown.	2-Un; 3-Ap	СК,РК	IV; V
	2. Use	e refractomete	to measure the refractive index	3-Ар	СК,РК	V; VI
	3. Me	asure the kine	ic rate of hydrolysis of esters	5-Ev	СК,РК	V;VI
	4. Use	e calorimeter to	determine heats of reactions	3-Ap;5-Ev	СК,РК	V; VI
	5. Use	e efficiently the	polarimeter	З-Ар	СК,РК	V;VI
	ph		asic principles of lab techniques adopted in ries, monitor, record and present data in a	2-Un	FK	V, VII, VII
МC	DULE	COURSE CON	TENT			CO No.
٧o						
	I	organic solve	aw: Partition of iodine, ammonia and aniline nts. Association of benzoic acid. Equilibrium co mmonium complexes. Enthalpy change for tri-io	onstants of Tr	ri-iodide	1,6
	II	refractions. C	y: Refractive index and molar refraction omposition of solid solutes. Molecular and id udy of the complex K2[HgI4].	•		2,6
	111	Chemical kin Saponificatio	etics: Acid hydrolysis of esters. Comparison on of esters. Persulphate-iodide second order nius parameters. Primary salt effect.	-		3,6
	IV	Thermochem heat of ioni	stry: Determination of water equivalent. Heat ation. Integral and differential heats of sol cermination of concentrations of strong acids.			4,6
	V	Polarimetry:	Inversion of cane sugar. Velocity constant mparison of strengths of two acids.	s for differe	nt acid	5,6
	VI Adsorption: Verification of Langmuir and Freundlich isotherms for solute adsorption on solids. Estimation of surface area. First order kinetics. Computation of adsorption thermodynamics. Exothermic and endothermic reactions.			6		
٦ef	 Fin Jar She 	niels,F. and Ma nlay, A. and Kite mes,A. M. "Pra oemaker, D. P	athews, J. H. "Experimental Physical Chemistry", chener, J. A. "Practical Physical Chemistry", Long ctical Physical Chemistry", Longman, 1981. . and Garland, C. W. "Experiments in Physical Ch rritt, L. L. and Dean, J. A. "Instrumental Meth	man, 1977. emistry", McG	iraw Hill,	

- 5. Willard, H. H. Merritt , L. L. and Dean, J. A. "Instrumental Methods of Analysis" 7th Edition, CBS Publishers, 2004..
- 6. Viswanathan, B.; Raghavan, P. S. "Practical Physical Chemistry," Viva Books, 2004.

SECOND SEMESTER

1.	Semester	2			
2.	Course Title	Inorganic Chemistry II			
3.	Course Code	CHE-CC-521			
4.	Credits	3			
5.		of the course, students should be able	TL	KL	PSO No.
		compare the electronic, spectral and	2-Un, 4-	FK,	PSO1, PSO3
		rties of metal complexes	2-01, 4- An, 5-E	CK	F301, F303
		undamental knowledge in co-ordination	3-Ap, 4-	FK,	PSO1, PSO3
		inderstand and evaluate properties of	-3-, An,	CK	1301,1303
	various metal co		5-E	CIX	
		stinguish the stability and reactivity of	4-An, 5-E	FK, CK	PSO1, PSO2
	· · ·	nonstrate the coordination chemistry of	4-An, 5-E	FK	PSO1, PSO2
	lanthanides and	•		СК	1301,1302
		instrate and compare the fundamental	2-Un, 4-	FK	PSO1, PSO2
		anometallic chemistry	An, 5-E	СК	,
	6. Explain and	examine the reactions of various	3-Ap, 4-	FK,	PSO1, PSO2
	organometallic o	complexes	An	СК	PSO3
			5-E		
	7. Evaluate the appropriate the sequence of th	plications of organometallic complexes in	4-An, 5-E	FK, CK	PSO2,PSO3
MOD				CN	
No	COURSE CONTENT				CO No.
I	Electronic Spectra parameters, splitt tetrahedral fields. octahedral and tet selection rules for vibronic coupling. Jahn Teller distor transfer spectra. Iu	hedral and -n ions in I transition, oupling and S. Effects of		CO1, CO2	
II	Magnetic properti by complexes- p susceptibility, Mag Spin only value. Or dependence of ma Independent P antiferromagnetism Elucidating the s complexes) using e		CO1, CO2		
III	involving complex and mechanism	al Complexes: Kinetics and mechanism o es in solution. Inert and labile complexe of nucleophilic substitution (Ligand dis are planar complexes. trans effect-t	es. Kinetics placement)		CO3

	applications. Kinetics and mechanism of octahedral substitution,	
	Dissociative and associative mechanisms, Ligand field effects on	
	reaction rate. Influence of acid and base on reaction rate. Racemization	
	and isomerization. Redox reactions in complexes: Electron transfer and	
	electron exchange reactions. Theories of Electron transfer reactions-	
	outer sphere mechanism-Marcus theory, inner sphere mechanism,	
	electron transfer in metalloproteins.	
IV	Coordination Chemistry of Lanthanides and Actinides: General	CO4
	characteristics of lanthanides-Electronic configuration, Term symbols	
	for lanthanide ions, Oxidation state, Lanthanide contraction. Factors	
	that mitigate against the formation of lanthanide complexes. Electronic	
	spectra and magnetic properties of lanthanide complexes. Lanthanide	
	complexes as shift reagents. General characteristics of actinides-	
	difference between 4f and 5f orbitals, comparative account of	
	coordination chemistry of lanthanides and actinides with special	
	reference to electronic spectra and magnetic properties.	
V	Organometallic Compounds-Synthesis, Structure and Bonding:	CO5
	Compounds with transition metal to carbon bonds, classification of	
	ligands, eighteen electron rule. Organometallic compounds with linear	
	pi donor ligands-olefins, acetylenes, dienes and allyl complexes-	
	synthesis, structure and bonding. Complexes with cyclic pi donors-	
	metallocenes and cyclic arene complexes structure and bonding.	
	Carbene and carbyne complexes. Preparation, properties, structure and	
	bonding of simple mono and binuclear metal carbonyls, metal nitrosyls,	
	metal cyanides and dinitrogen complexes. Polynuclear metal carbonyls	
	with and without bridging.	
VI	Reactions of Organometallic Compounds: Substitution reactions-	CO6, CO7
	nucleophilic ligand substitution, nucleophilic and electrophilic attack on	
	coordinated ligands. Addition and elimination reactions-1,2 additions to	
	double bonds, carbonylation and decarbonylation, oxidative addition	
	and reductive elimination, insertion (migration) and elimination	
	reactions. Catalysis by organometallic compounds: Homogeneous and	
	heterogeneous organometallic catalysis-alkene hydrogenation using	
	Wilkinson catalyst. Reactions of carbon monoxide and hydrogen-the	
	water gas shift reaction, the Fischer-Tropsch reaction (synthesis of	
	gasoline). Hydroformylation of olefins using cobalt or rhodium catalyst.	
	Carbonylation reactions-Monsanto acetic acid process, carbonylation of	
	butadiene using Co2(CO)8 catalyst in adipic ester synthesis. Palladium	
	catalysed oxidation of ethylene-the Wacker process.	
Refere		
	Banerjea, D. "Coordination Chemistry", 3rd Edn., Asian books, 2009.	
2.		
	Cotton, S. "Lanthanide and Actinide Chemistry", John Wiley & Sons, 2007.	
4.	Dutta, R. L and Syamal, A. "Elements of Magnetochemistry", 2nd Edr	n., East West press,
-	1993.	las of Church
5.		ies of Structure and
~	Reactivity", 4th Edn, HarperCollins, New York., 1993.	
6.	Kettle, S. F. A. "Physical Inorganic Chemistry: A Coordination Chemistry	approach", Oxford

University press, 2000.

- 7. Mehrotra, R. C. and Singh, A. "Organometallic Chemistry: A Unified Approach", New age international, 2007.
- 8. Purcell, K. F. Kotz, J. C. 'Inorganic Chemistry", Holt-Saunders, 2010.
- 9. Sathyanarayana, D. N. "Electronic Absorption Spectroscopy and Related Techniques", Universities press, 2001.
- 10. Miessler, G. L., Fischer, P. J and Tarr, D. A " Inorganic Chemistry" 5thedn. Pearson, 2014.

Additional References

- 1. Bailar, J. C. "Chemistry of Coordination Compounds", Reinhold, 1956.
- 2. Basolo, F. Pearson, R. G. "Mechanisms of Inorganic Reaction", John Wiley & Sons, 2006.
- 3. Crabtree, R. H. "The Organometallic Chemistry of Transition Metals", 2Edn, Wiley.
- 4. Guptha, B. D. Elias, A. J "Basic Organometallic Chemistry", Universities Press, 2010.
- 5. Holleman, A. F. and Wiberg, E. "Inorganic Chemistry", Academic.
- 6. Lever, A. B. P. "Inorganic Electronic Spectroscopy", 2nd Edn., Elsevier, 1984.
- 7. Lewi, E. s and Wilkins, R. G. (Eds.), "Modern Coordination Chemistry", Interscience, 1967.
- 8. Wilkins, R. G. "Kinetics & Mechanism of Reactions of Transition Metal Complexes", 2Ed, VCH.

Model Question Paper

SECOND SEMESTER M.Sc. DEGREE EXAMINATION Month Year Branch: CHEMISTRY

CHE-CC-521: INORGANIC CHEMISTRY II

Time: 3 hours

Max. Marks: 60

SECTION-A

Answer **any 10** questions. **Each** question carries **2** marks

- 1. [Ti Cl₆]³⁻ and [Ti (CN)₆]³⁻ gives λ_{max} at 13,000 cm⁻¹ and 22,300 cm⁻¹ in their respective electronic spectra. Justify the statement.
- 2. The term symbols for d^3 and d^4 configuration is ⁴F. Explain.
- 3. Predict the geometries and magnetic moments of $[Ni Cl_4]^{2-}$ and $[Ni (CN)_4]^{2-}$ on the basis of valence bond theory.
- 4. Calculate the magnetic moment for $[\text{Co Cl}_4]^{2-}$ taking into account the fact that there is angular momentum contribution to the magnetic moment. ($\Delta = 3100 \text{ cm}^{-1}$).
- 5. Which isomer of [Pt (NH₃)₂ Cl₂] is formed when [Pt (NH₃)₄]²⁺ is reacted with 2 moles of HCl? Why?
- 6. 'The inert complexes are not necessarily thermodynamically stable'. Justify this statement with an example.
- 7. Lanthanides ions give rise to very sharp bands in their electronic spectra. Why?
- 8. Yttrium is concentrated along with lanthanides; why?

- 9. Draw the structures of the following 18 electron compounds and mention the hapticity of organic ligands:
 - i) [Mn (CO)₄ (C₃H₅)] ii) [Fe (CO)₂ Cp (CH₃)]
- 10. The IR stretching frequency of CO in metal carbonyls is lower than that for free CO molecule. Why?
- 11. What are oxidative addition and reductive elimination reactions, as applied to organometallic chemistry?
- 12. Write a catalytic cycle for the synthesis of acetic acid from methanol.

SECTION-B

Answer any 6 questions. Each question carries 4 marks

- 13. Discuss the spectral consequence of Jahn- Teller distortion in transition metal complexes.
- 14. The electronic spectrum of $[Co (NH_3)_6]^{3+}$ has a weak band in the red and two medium intensity bands in the visible to near UV region. Assign these transitions using Orgel diagram.
- 15. What is spin-only magnetic moment? How it is useful in the structural elucidation of transition metal complexes?
- 16. Illustrate the mechanism of inner-sphere electron transfer reactions using a specific example.
- 17. What is trans effect? What is its theoretical basis?
- 18. Discuss the bonding in metal nitrosyls.
- 19.) Exemplify and briefly discuss the structure and bonding in cyclic arene complexes.
- 20. Draw and discuss the catalytic cycle for hydroformylation of alkenes using rhodium complex as catalyst.

SECTION-C

Answer any 2 questions. Each question carries 8 marks

- 21. Write briefly on Tanabe-Sugano diagrams with special reference to their construction and advantages in the interpretation of electronic spectra.
- 22. i) Discuss briefly about the temperature dependence on magnetism.ii) What is meant by aquation reaction? Using suitable examples, explain the mechanism of aquation reactions of octahedral complexes. (4 + 4)
- 23. Compare lanthanide and actinide complexes based on their oxidation state, electronic spectra and magnetic properties.
- 24. i) Discuss the general methods of preparation of metal carbonyls.
- ii) Illustrate the mechanism of oxidation of ethylene using Wacker process.(4 + 4)

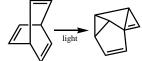
2. 3. 4. 5.	Cours Cours	e Title	Ousenie Chemistry II			
4.	Cours		Organic Chemistry II			
		e Code	CHE-CC-522			
5	Credit	S	3			
υ.	СО			TL	KL	PSO
	On co	mpletion of t	he course, students should be able to:			No.
	1. Co	mprehend the	e reactivity pattern of free-radicals	2-Un, 4-An	FK, CK	I
			ne orbital interactions and apply orbital lations of various pericyclic reactions	2-Un, 3-Ap	FK, CK	I, III
	3. Uno	lerstand phot	ochemistry of molecules	2-Un, 3-Ap	FK	I, II, III
			nanisms of organic reactions involving free- certed reactions	З-Ар, 5-Е	СК, МК	III
	str	•	MS, UV-Vis spectroscopic techniques to solve ganic molecules and in determination of their v.	3-Ар	СК, МК	III, VI
		erpret the spe	ctroscopic data of unknown compounds.	3-Ар, 5-Е	СК, МК	VI
MOE No	DULE	COURSE CO	NTENT		CO No.	
		additions o Introduction reactions – Barton rea coupling.	aldwin's rules of ring closure, Inter and in f radicals to alkenes and alkynes, Radical cha n to polymers and free-radical polymerizati Pinacol, acyloin, McMurry, Hoffmann-Lofler ctions, Use of NBS and tributyl tin hydrid	in reactions, ons, Named -Freytag and les, Ullmann	3, 4	
	II Organic Photochemistry - Primary photoprocesses. Jablonski diagram, Photoreactions of C=O systems, enes, eneones, dienes and arenes. Photoisomerisations, Norrish type I and II reactions. Patterno-Buchi and Barton reactions. Di-D-methane and aromatic photo rearrangements. Photochemical remote functionalisation and hydrogen abstraction reactions. Introduction to PET, chemi and bioluminescent reactions. Chemistry of singlet oxygen. Photochemistry in nature. Photosynthesis. Introduction to organic applied photochemistry and femtochemistry, photochromism and thermochromism.					
	 Concerted Reactions - Symmetry properties of MOs. Principle of conservation of orbital symmetry. Pericyclic reactions - theory, mechanism and stereocourse of electrocyclic reactions, cycloaddition reactions and sigmatropic rearrangements, 1,3-dipolar cycloadditions, ene reactions, chelotropic reactions, Sommelet-Hauser, Cope, Claisen and Mislow-Evans rearrangements, thermal eliminations. Woodward-Hoffmann selection rules, secondary orbital interactions in [4+2] cycloadditons, factors affecting rates of cycloaddition reactions. NMR Spectroscopy - Magnetic nuclei with emphasis on 1H and 13C, 					

shifts - Field and anisotropic factor magnetic non-equivalence, 1H and	cal shifts, factors affecting chemical	
constants Pascals triangle, first Karplus curve, Quadrapule broade Shift reagents and their role, Dec resonance decoupling, NOE. Introduction to 2D NMR. Correla	13C NMR scales, Spin-spin splitting – and AMX type coupling, Coupling order and non-first order spectra, ning, virtual and long-range coupling, coupling and double resonance, Off- tion, NOE and quantum correlation 7, HETCOR, HMQC, HMBC, NOESY and	
V UV-Vis and IR Techniques - UV-VIS conjugated systems. Woodwar absorption spectra. Chiroptical p ORD, Cotton effect, octant rule, ax bands of functional groups. Factors – vibrational coupling, hydrogen bo effects, Identification of functional by IR.	spectra of enes, eneones, arenes and rd-Fieser rules, Solvent effect on roperties – introduction to CD and cial haloketone rule. Characteristic IR s affecting the IR stretching frequency onding, electronic, inductive and field groups and other structural features	5
production methods. Characteristic rearrangements including Mc	EI, CI, SIMS, FAB, ES and MALDI ion c EIMS fragmentation modes and MS Lafferty rearrangement, Spectral ication and solving of structural ctral data.	5, 6
 References 1. ROC Norman and JM Coxon, "Principles of "Fundamentals of Photochemistry" – KK 3. Ian Fleming "Pericyclic Reactions", Oxfo 4. Williams, D. H. and Flemming, I. "Spect McGraw Hill. 2011 5. Kemp, W. "Organic Spectroscopy" Palgreet 	Rohatgi-Mukherjee, New Age Internati rd University Press, 2015 troscopic Methods in Organic Chemis	onal; 2017
Additional References		
1. Clayden, J., Greeves, N and Warren, S. "(Organic Chemistry", OUP. 2001	
2. Coxon, J. M. and Holton, B. "Organic Pho		
3. Kagan, J. "Organic Photochemistry, Princ		93
4. KC Majumdar and P. Biswas "Textbook o		
5. Kalsi, P. S. "Organic Spectroscopy", Wiley	y Eastern, 2014.	
6. Pavia, D. L. Lampman, G.M. and Kriz, G. S Brooks/Cole, 2001.		dition,
7. JR Dyer "Applications of absorption spec	troscony or organic compounds" PHI la	arning 2015
8. Silverstein, R. M. <i>et sl.</i> "Spectrometric Id		0
9. Wayne, C. E. and Wayne, R. P. "Photoche		really writy.

SECOND SEMESTER M.Sc. DEGREE EXAMINATION 2020

Branch: CHEMISTRY

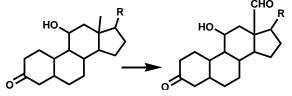
CHE-CC-522: ORGANIC CHEMISTRY II

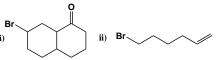

Time: 3 hours

Max. Marks: 60

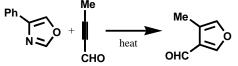
SECTION-A

Answer any 10 questions. Each question carries 2 marks


- 21. What is the product formed when CO₂H(CH₂)₈CO₂H is treated with sodium in xylene followed by hydration?
- 22. Illustrate the polymerization mechanism of styrene.
- 23. Illustrate Di-pi-methane rearrangement.
- 24. Provide mechanism for the following conversion:

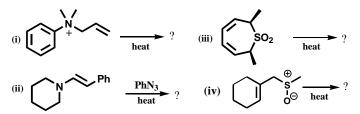

- 25. Predict the products formed when the following molecules are irradiated (i) (2Z, 4E)-hexadiene and (ii) (2Z, 4Z, 6E)-octatriene.
- 26. Depict the cycloaddition of tropone with butadiene.
- 27. Illustrate the product formed when benzyne undergoes cycloaddition to i) anthracene and ii) furan.
- 28. How many signals are present in the broadband decoupled ¹³CNMR spectrum of i) catechol (ii) resorcinol and (iii) hydroquinone?
- 29. A compound shows the following ¹HNMR values: δ 9.2 (1H, s), 7.3-7.8 (5H, m), 6.8 (1H, d), 6.6 (1H, d). Identify the compound. What happens to the ¹HNMR if the compound is reduced?
- 30. Identify the structure of $C_8H_{10}O$ whose NMR spectra has 3 singlets at δ 2.1, 3.7 and 7.1 in the intensity ratio 3:2:5.
- 31. What is the characteristic feature in the MS of an organic compound containing (i) 3 Cl atoms and (ii) 2 Br atoms?
- 32. Determine the absorbance of a solution of an organic dye (0.0007moldm⁻³) in a cell with a 2cm pathlength if its absorptivity is 650mol⁻¹dm³cm⁻¹.

SECTION-B


Answer any 6 questions. Each question carries 4 marks

34. What are the products formed when the following molecules are treated with Bu₃SnH and AIBN

35. Explain the mechanism of the following reaction.


- 36. Based on the FMO theory predict and explain the product formation when (2E, 4Z, 6E)octatriene electrocyclizes a) thermally and b) photochemically
- 37. A compound with molecular formula $C_4H_6O_2$ shows an IR band at 1770 cm⁻¹. The ¹³CNMR peaks are at 178, 68, 28 and 22 ppm. The compound is either five-membered or a four-membered lactone with a side chain. Deduce the correct structure.
- 38. Arrange the following in the order of increasing IR stretching frequencies i) cyclobutene-1,2-dione, cyclohex-2-enone, cyclopent – 2-enone and tropone ii) benzophenone, 4chloro-benzaldehyde, anisaldehyde and benzaldehyde.
- 39. What is the intensity ratio of the molecular ion cluster in (i) CH₂Br₂ and (ii)CH₂Cl₂?
- 40. What is the mass of metastable ion produced due to decomposition of fragment ion (m/z: 177) in the sequence: Diethyl phthalate (M⁺: 222) to (fragment 1)⁺ (177) to (fragment 2)⁺ + CO.

SECTION-C

Answer any 2 questions. Each question carries 8 marks

- 41. a) Explain the orbital correlation diagram for an electrocyclic reaction.
 - b) Predict the major product formed from the following pericyclic reactions

[4+4]

- 22. a) How can *cis*-2-butene be differentiated from *trans*-2-butene using i) IR spectroscopy and ii) NMR spectroscopy?
 - b) Depict and explain the ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of *iso*-butyl acetate [4+4]
 - 23. a) Identify the structure of the two isomers A and B of molecular formula C₈H₇BrO₂ IR IH NMR chemical shift

Isomer A
$$\frac{\text{cm}^{-1}}{1698}$$
 2.8, s; 3 sets of Ar H's at 7.2-7.4 (2 sets of soublets), 7.44-7.48 (dd), 7.52-7.6 (dd)

- Isomer B 1688 2.6, s; Symmetric aromatic H's at 7.6, d and 7.8, d
- b) Explain NOE with an example

[4+4]

- 24. a) Explain why [4+2] cycloaddition is thermally allowed whereas [2+2] is forbidden using FMO theory.
 - b) Illustrate the synthesis of i) oxetanes and ii) cyclobutanes by photochemical reactions.

1.	Semes	ster	2				
2.	Course	e Title	Physical Chemistry II				
3.	Course	e Code	CHE-CC-523				
4.	Credit	S	3				
5.	СО				TL	KL	PSO No.
			course, students should be able to:				
		lerstand and ap problems.	ply approximation methods to solve for r	many	2-Un;3- Ap	СК,РК	1,11,111
	2. Der	ive the various	atomic and diatomic molecular term sym	bols	4-An	СК	I, II, III
	3. Exp theori		ntiate molecular orbital and valence bond	d	3-Ap; 4-An	СК	I, II, III
	-		Theory and semiempiricalHuckel MO tre conjugated molecules	eatment	3-Ар	СК,РК	11, 111, 1V, VI
	5. Und	lerstand the pr	nciples of the rotational, vibrational, elec nce spectroscopic techniques	ctronic,	2-Un	FK,CK	1, 11
			s of spectroscopy and interpret the data t sure of compounds	to	2-Un, 4-An,5- Ev	СК,РК	11, 111, 1V, VI
MC No	DULE	COURSE CON	ENT				CO No.
		atom. Secula perturbation increasing po principle. Syn	prem and proof. Variational treatment r determinant. Perturbation method o energy and wave function. Application ential, Helium atom. self-consistent field metry and antisymmetry wave function nodel. Spin orbit coupling. Spectroscopic	d – 1st n to parti d method. ons. Slate	and 2nd cle in 1-D Pauli's ex er determ	order box of clusion inants.	
	 Ines. Molecular problems. Born-Oppenheimer approximation. Molecular Orbital Theory. MO theory of hydrogen molecule ion. Valence Bond theory (H2). MO theory of H2 and other homonuclear diatomic molecules. Molecular orbital diagrams, Bond order and stability. MO theory of simple heterogeneous diatomic molecules like HF, LiH, CO and NO. Defects in simple MO and VB theories.Semi empirical MO treatment of planar conjugated molecules. HuckelMO theory and calculation of energy and MO of ethylene, butadiene and allylic anion and cyclic systems – cyclobutadiene and benezene. Calculation of charge distribution, bond order and free valency. 						2,3
	 Ab initio methods. Hartree equations and Hartree-Fock equations for molecular problems. Roothaan modification. Hartree Fock Roothan equations.Basis sets andBasis functions. Slater type orbital (STO) and Gaussian type orbital (GTO). Contracted and primitive. Basis sets and classification. Minimal, multiple zeta, split-valence, polarized and diffused. Pople style basis sets. Electron correlation and relativistic effects, Configuration interaction. Z-matrtix. 					4	
	IV	molecules. R internuclear o	tomic molecules: Microwave spectrosco otational spectrum. Intensity of spect istance. Nonrigid rotors and centrifugal on. Infrared spectroscopy: Rotational	tral lines distortion	. Calculat . Introduc	tion of to	5,6

	molecules. Linear and symmetric top molecules. Vibrational spectra of harmonic	
	and anharmonic diatomic molecules. Fundamental and overtones. Determination	
	of force constants. Vibrational rotational couplings. Different branches of	
	spectrum. Symmetry of vibrational-rotation spectrum. Vibrational spectra of	
	polyatomic molecules. Normal modes. Classification of vibrations. Overtones,	
	combination and Fermi resonance. Group frequencies.Introduction to	
	instrumentation and FT IR.	
V	Raman spectra: Scattering of light. Raman scattering. Polarizability and classical	5,6
	theory of Raman spectrum. Quantum theory of Raman spectrum. Rotational and	
	vibrational Raman spectrum. Introduction to instrumentation. Laser Raman	
	spectrum. Raman spectra of polyatomic molecules. Complementarity of Raman	
	and IR spectra.Electronic spectra: Term symbols of molecules. Electronic spectra	
	of diatomic molecules. Vibrational coarse structure and rotational fine structure	
	of electronic spectrum. Franck-Condon principle. Herzberg-Teller vibronic	
	coupling, KHD equation, Fermi Golden rule. Types of electronic transitions.	
	Fortrat diagram. Predissociation. Morse function. Calculation of heat of	
	dissociation. Introduction to instrumentation. Electronic spectra of polyatomic	
	molecules: Electronic transitions and absorption frequencies. Effect of	
	conjugation.	
VI	Resonance spectroscopy: Nuclear spin and interaction with an applied magnetic	5,6
	field. Nuclear resonance. Population of energy levels. 1H NMR spectrum.	
	Chemical shift. Relaxation, Spin-spin coupling, Fine structure; Fourier transform	
	NMR spectroscopy, Nuclear overhauser effect, NMR spectra of other nuclei.	
	Introduction to instrumentation. Electron spin in molecules and its interaction	
	with magnetic field. ESR spectrum. The g factor and its determination. Fine	
	structure and hyperfine structure. Mossbauer spectroscopy: Doppler effect.	
	Chemical shift. Quadrupole effect.	
Reference	25:	
1. Levine	e, I. N., "Quantum Chemistry", 7thEdition, Pearson Education Inc., 2014.	
	arrie, D. A., "Quantum Chemistry", 2ndEdition,University Science Books, 2008.	
	ell, C. N.; McCash, E.M., "Fundamentals of Molecular Spectroscopy", 4th Edition, Mc	Graw-Hill.
1999		,
	w, G. M., "Introduction to Molecular Spectroscopy", McGraw Hill, 1962.	
	ls, F. and Alberty, R. A., "Physical Chemistry",4th Edition, Wiley Eastern, 1976.	
Additiona	l References:	
	s, P. W., "Physical Chemistry", 9th Edition, OUP, 2010.	
	dra, A. K., "Introduction to Quantum Mechanics", 4th Ed, Tata McGraw-Hill, New Delh	i. 2003.
	d, R. K., "Quantum Chemistry", 4th Edition, New Age International, 2009.	, _0001
	p, R. S., "Physical Methods in Inorganic Chemistry", East West, 2012.	
•	wyn Hughes F A "Physical Chemistry" 2nd Revised Edition Pergamon 1965	

5. Moelwyn Hughes, E. A., "Physical Chemistry", 2nd Revised Edition, Pergamon, 1965.

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, Month Year Branch: CHEMISTRY CHE-CC-523: PHYSICAL CHEMISTRY II

Times: 3 Hours

Max. Marks: 60

SECTION- A

Answer any 10 questions. Each question carries 2 marks.

- 1. Write down the perturbation term in the Hamiltonian of Helium atom.
- 2. Write down the Slater determinant of Li atom.
- 3. What is Born-Oppenheimer approximation? Why is it important?
- 4. Write down the ground state term symbol for a) O₂ b) CO
- 5. Write down the Huckel determinant for benzene and cyclobutadiene.
- 6. Differentiate between *ab initio* and semiempirical MO treatments.
- 7. The microwave spectrum of CN shows a series of lines separated by 3.8 cm⁻¹. Calculate the internuclear distance between C and N.
- 8. Homonuclear diatomic molecules are IR inactive, but Raman active. Why?
- 9. What are polarized Raman lines? How is it important in the structure elucidation?
- 10. What is the significance of Franck Condon principle?
- 11. What is 'g factor'? Explain its significance.
- 12. Which is the commonly used reference standard in ¹H NMR? Why is it preferred?

SECTION-B

Answer **any 6** questions. Each question carries **4** marks.

- 13. State and Prove variational theorem.
- 14. Explain various steps to solve H₂ by VB method.
- 15. Define Coulomb and Exchange integrals. Justify their sign and magnitude.
- 16. The fundamental and first overtone transitions of NO are centered at 1876 cm⁻¹ and 3724 cm⁻¹ respectively. Calculate the equilibrium vibration frequency and anharmonicity constant.
- 17. Give a brief note on FTIR.
- 18. Explain Fortrat diagram.
- 19. Explain the quantum theory of Raman spectrum.
- 20. Explain the ESR spectrum of methyl radical.

SECTION-C

Answer any *two* question. Each question carries 8 marks

- 21. a) Set up first order perturbation equation for a non-degenerate system
 - b) Solve this to get the expression for first order correction to energy and wave function. (3+5)

22. a) Briefly explain the approximations involved in the Hückel MO method.b) Calculate the delocalization energy of benzene using HMO method.	(3+5)
 23. a) Write a note on anisotropic effect in ¹H NMR. b) Explain in detail the factors that govern the chemical shift values. (4+4) 	
24. a) Explain the factors that affect the intensity of spectral lines	

b) Distinguish between pure rotational spectrum and vibrational rotational spectrum of molecule.
 How are these different from electronic spectrum? (3+5)

1.	Semester	2			
2.	Course Title	Inorganic Chemistry Lab II			
3.	Course Code	CHE-CC-524			
4.	Credits	3			
5.	CO: On completion of the	e course, students should be able to:	TL	KL	PSO No.
	1. Perform colorimetric	experiments for the quantitative	З-Ар	СК, РК	PSO5
	determination of vari		4-An		PSO6
		anic synthesis and conduct	3-Ap	РК <i>,</i> МК	PSO4
		niques such as IR, UV-Vis absorption	4-An		PSO5
	and NMR spectroscop	ру			PSO6
	3. Discuss coordination	chemistry of Ni complexes	2-Un	СК	PSO1
		· ·	4-An		PSO2
MOD. No	COURSE CONTENT			CO No.	
I	Colorimetric estimation of	CO1			
П	Quantitative estimation of Chromium by colorimetry.				01
- 111	Quantitative estimation of	of Manganese by colorimetry.		C	01
IV	Colorimetric estimations	of Ti, W and Cu., after plotting ca	libration	C	01
	graph.				
v	-	zation of Ni(II) Complexes		CO2, CO3	
		of [Ni(en)3]Cl2 2H2O			
	b. The preparation				
		of [Ni(en)2]Cl2 . 2H2O			
VI		zation of tetraphenylporphyrin and	its Zn(II)	C	02
	complex				
Refere				ام بر مربع	
1. 2.		ndard Methods of Inorganic Analysis" and Sandell, "Treatise on Analytical Ch	-		
2. 3.		M. "Analytical Chemistry: An Introduct			
3. 4.		antitative Inorganic Analysis", Longm	-	nucis.	
т.		and any sis , Longin			

1.	Seme	mester 2				
2.	Cours	e Title	Organic Chemistry Lab II			
3.	Cours	e Code	CHE-CC-525			
4.	Credit	s	3			
5.	СО			TL	KL	PSO No
	On co	mpletion of t	he course, students should be able to:	16	NL	P30 N0
	1. Set	t-up organic r	eactions - single-step and double-step	З-Ар	РК	I, V
	2. Prepare certain heterocyclic compounds I-R, 3-A				FK, PK	V
	3. Purify the products by filtration or chromatography				РК	V
	4. Rec	ord the melt	ing point of compounds	3-Ap	РК	V
	5. App	oly spectrosco	3-Ap, 4-An	FK, CK	IV, VI	
	6. Rec	ord IR and U	V data of compounds	3-Ар	СК, РК	IV
MOI No	DULE	COURSE CO	NTENT		CO No.	1
benzoylatio		•	of organic compounds by single step reac n, esterification, nitration, sulphonation, halogenat		1, 2	
	II	Preparation	of compounds by double-stage synthesis – r	nitration	1	
		followed by	hydrolysis, bromination followed by hydrolysis etc			
	111		f carbonyl compounds – aldol condensation – pre s and oximes	paration	1, 2	
IV Prepa			of heterocyclic compounds - benzimidazoles, tated isatins.	ıds - benzimidazoles, thiazoles		
		and it any			-	
	V	Spectral int	erpretation of organic compounds [simple as well and lab as above} using UV-VIS and IR, NMR and		5	

1. Ahluwalia, V. K. and Aggarwal, R. " Comprehensive Practical Organic Chemistry", Vol 1 & 2, Universities Press.

2. Furniss, B. S and others, "Vogel's Textbook of Practical Organic Chemistry", ELBS.

3. Silverstein, R. M. et al., "Spectrometric Identification of Organic Compounds", 8th Edn, Wiley.

1.	Semes	ster	2			
2.	Course	e Title	Physical Chemistry Lab II			
3.	Course	e Code	CHE-CC-526			
4.	Credit	S	3			
6.	СО			TL	KL	PSO No.
			e course, students should be able to:			
	1. Use	the viscomete	r to measure the viscosity of solutions	2-Un; 3-Ap	СК,РК	IV; V
	2. Me	asure surface to	ension of liquids	3-Ap	СК	IV; V
			ring points of mixtures and apply it to study	3-Ap; 5-Ev	СК,РК	V;VI
	•	depression constant, association and dissociation and eutectic				
_	diagra					
	4. Det diagra		cibility temperatures to construct the phase	3-Ap;5-Ev	СК,РК	V; VI
	5. Det	ermine the trai	nsition temperature.	3-Ap	СК	V;VI
Ē	6. Und	derstand the pr	inciples of lab techniques adopted in physical	2-Un	FK	V, VII,
	Labora	atories, monito	r, record and present data in a scientific form			VIII
MO No	DULE		TENT			CO No.
	I Viscosity: Viscosities of liquids and mixtures of liquids. Verification of Kendall's equation and Jones-Dole equation. Viscosity of polymer solutions. Variation of viscosity with temperature.				1,6	
	II Surface tension: Surface tension and parachor of liquids by differential capillary and stalagmometer methods. Variation of surface tension with concentration. Determination of atomic parachor.				2,6	
	III Cryoscopy: Determination of molar freezing points. Depression constant and molecular mass using solid and liquid solvents. Study of dissociation and association of solutes. Atomicity of substances like sulphur.				3,6	
	IV	Phase equilit	oria I: CST of phenol-water system. Deter as of NaCl, acetic and oxalic acid. Constructio			4,6
	V	unknown conc	a II: Construction of Two component eutectic dia entration of given mixture. Three component sy ple liquids. Construction of phase diagrams and mixtures.	stems with or	ne pair of	3,6
	VI		perature: Transition temperature of sodium acetat s of urea. Transition temperature of sodium thiosul		n acetate.	5,6
Refe	erence	•				1
	1. Da	iniels,F. and Ma	athews, J. H. "Experimental Physical Chemistry"		1970.	
		-	:hener,J. A. "Practical Physical Chemistry", Lonฐ ctical Physical Chemistry", Longman, 1981.	5111a11, 1977.		
			. and Garland,C. W. "Experiments in Physical Ch	nemistry". Mc	Graw Hill	1998.
	5. W		rritt , L. L. and Dean, J. A. "Instrumental Meth			
	6. Viswanathan, B.; Raghavan, P. S. "Practical Physical Chemistry," Viva Books, 2004.					
	7. Ya	davJ. B., "Adva	nced Practical Chemistry", Krishna Prakashan N	/iedia, 2015.		

1.	Seme	ster	2				
2.	Cours	e Title	ADVANCED ORGANIC CHEMISTRY				
3.	-	e Code	CHE-DE-528				
4.	Credit	ts	2	n -	T		
5.	CO			TL	KL	PSO	
			he course, students should be able to:	LD		No.	
	1. impor		rview of supramolecular assemblies and their	I-R, 2-Un	FK, CK	I, II	
		mprehend the mented	e green chemistry principles and how they are being	2-Un, 3-Ap, 4-An	FK, CK	II, III	
	3. Get	an introduct	ion to medicinal chemistry and drug action	1-R, 2-Un,	FK	I, II	
	4. Un	derstand poly	merization mechanisms and processes	2-Un, 3-Ap	FK	I, II	
	etc.				FK, CK	III, VI	
MO No	DULE	COURSE	CONTENT		CON	No	
I	Supramolecular Chemistry - Noncovalent interactions: Molecular and chiral recognition, Host-Guest chemistry and inclusion complexes: crown ethers, cryptands, calixarenes, cyclophanes and cyclodextrins, Self-Assembly and Self-Organization, Molecular Aggregates: lipid membranes, nanotubes, micelles and liquid crystals, Fullerene based supramolecular systems, Dendrimers, Molecular devices: molecular switches and wires, Molecular recognition in biological systems like DNA and proteins.				1		
11		recognition	of Biomolecules - DNA replication, Codon and an Protein biosynthesis, transcription and translation, A sequencing. DNA profiling and the Polymerase PCR).	Genetic	1		
III		chemistry. green pro- Microwave alternate mo	emistry - Background, origin and principles of Atom economy and other metrics of greenness. Exan cesses. Solid supports, Supercritical carbon of and sonochemical synthesis. Synthesis using solver edia conditions: fluorous and ionic liquid media.	nples of dioxide, ntless or	2		
IV		drug disco pharmacoki receptor in Classificati antimalaria examples.	Chemistry and the Chemistry of the Cell - Introdu- very and design, drug administration, Drug ad- inetic and pharmacodynamic phases, receptor protein teraction, drug action, drug selectivity, drug meta on of drugs, Anti-anginal drugs, antihypertensive I drugs, aminoquinolines, Antibiotics and analgesi Drug stability, Penicillins, tetracyclins and cephalo cancer, AIDS and diabetes, Composition and st lipids.	ction – ns, drug bolism, agents, cs with sporins.	ug m, ts, th as.		
V		polymerization of molecula	nemistry - Classes of polymers. Types and mechan tion reactions (free-radical, cationic and anionic). M ar mass and size distribution determination. GPC an echniques, Polymer structure and property character	Aethods d Light	4		

	Synthesis of stereoregular polymers. Polymerization techniques. Bulk, Solution, melt, suspension, emulsion and dispersion techniques, Group Transfer, metathesis and ring opening polymerization. Copolymerization. Polymers as supports, reagents and catalysts, Biodegradable polymers, conducting polymers.	
VI	Quantitative analysis of organic functional groups - Analysis of oils and fats. Principle of the analysis of milk and starch based food materials. Organic trace analysis using spectrophotometry and fluorimetry.	5

REFERENCES

- Lehn, J. M. "Supramolecular Chemistry Concepts and Perspectives", VCH, 1995
- Anastas, P. T. and Warner, J. C. "Green Chemistry: Theory and Practice," OUP.
- Ahluwalia, V. K and Chopra, M. "Medicinal Chemistry", Ane Books, 2008.
- Billmayer, F. W. "Textbook of Polymer Science", 3rd Edn, Wiley. N.Y. 1991.
- Gunzler, H. and Williams, A. Handbook of Analytical Techniques, Vol. 1&2, Wiley VCH

ADDITIONAL REFERENCES

- Vogtle, F. "Supramolecular Chemistry An introduction", Wiley, 1993.
- VK Ahluwalia "Green Chemistry Environmentally Benign Reactions", Paperback 2012
- VR Gowarikar "Polymer Science", New Age International, 2015
- Wilson and Gisvolds."Text book of Organic, Medicinal and Pharmaceutical Chemistry", J. B. Lippincott Williams and Wilkins, 2011
- Lehninger, A. L. Nelson, D. L. Cox, M. M. "Principles of Biochemistry" 5th Edn., W. H. Freeman, 2008
- Holmes, D. J. and Peck, H. "Analytical Biochemistry", 3rd Edn, Longman, 1998

Model Question Paper

SECOND SEMESTER M.Sc. DEGREE EXAMINATION 2020

Branch: CHEMISTRY

CHE-DE-528 ADVANCED ORGANIC CHEMISTRY

Time: 3 hours

Max. Marks: 60

SECTION-A

Answer any 10 questions. Each question carries 2 marks

- 1. Suggest a synthesis method for 18-crown-6 and explain one application.
- 2. How can calixarenes and porphyrins form supramolecular systems?
- 3. Give the structures of RNA and DNA
- 4. What is PCR? Explain the important points.
- 5. Give any two examples for sonochemical synthesis.
- 6. What are ionic liquids? Illustrate an example of its synthesis and application.
- 7. What are prodrugs? Give an example.
- 8. What are the factors affecting the degree of drug absorption?
- 9. Explain the light scattering method for molecular weight determination of polymers.

- 10. Give two examples each of i) biodegradable polymer and ii) conducting polymer
- 11. How can the iodine content in a organic compound be analyzed?
- 12. What are POP's? Give examples.

SECTION-B

Answer **any 6** questions. **Each** question carries **4** marks

- 13. Illustrate the self-assembly of i) barbituric acid and 2,4,6-triamino pyrimidine and ii) bipyridine in presence of Cu(I).
- 14. How are liquid crystals classified? Give examples.
- 15. Explain the primary structure determination of a protein.
- 16. Provide examples of reactions taking place in i) MW conditions and ii) in solid supports
- 17. Explain the SFE and SFC techniques.
- 18. What is meant by ADME of a drug? Explain.
- 19. Explain bulk and emulsion polymerization techniques.
- 20. How is the lactose content in milk determined?

SECTION-C

Answer any 2 questions. Each question carries 8 marks

21 a) What are the essential features that a molecule should possess to act as a molecular wire? Give example.

b) Luminescent cryptates of Eu(III) can be used to construct photonic devices. Explain.

- 22. a) Discuss the principles of green chemistryb) Discuss any two green chemistry experiments which can be done in a lab.
- 23. a) Explain group transfer and ring opening polymerization techniques.
 - b) What are stereoregular polymers and how are they synthesized?
- 24 a) Explain protein biosynthesis.

b) How can the amount of detergent in a water sample be analyzed and how can it be removed?

1.	Semester		2			
2.	Cours	Course Title Organic Functional Materials				
3.	Cours	e Code	CHE-DE-528 A			
4.	Credit	ts	2			
5.	5. CO On completion of the course, students should be able			TL	KL	PSO No.
			of carbon nanomaterials	I-R, 2- Un	FK, CK	I, II
	2. Int condu	•	various factors associated with organic	2-Un, 4- An	FK, CK	II, III
	3. To	comprehend	the excited state processes	2-Un, 4- An	FK	I, II
	4. To	analyze and	apply the properties to real systems	3-Ap, 4- An	FK, CK	I, II
	5. To	understand t	he role of MOF's	I-R, 2- Un	FK, CK	III, VI
MO No	DULE	COURSE	CONTENT		CON	l o.
I		fullerenes Covalent carboxylati click reacti alkylation, charge	and graphenes) functionalization, halogenation, on, functionalization through cycloaddition on), carbene, nitrene and carbanion addition arylation, cyclopropanation, zwitterion-me	, reductive diated and n-covalent	1	
Π		Organic s Introduction conjugation complexes conducting	semiconductors, conductors and superc n; Fundamentals of organic semiconductors n, hybridization, electronic structure), Cond , conducting polymers; conjugated metal-macrocyclic complexes (porphyrin n in organic superconductivity, supercond	onductors (bonding, lucting CT polymers, s), pairing	2	
III		Jablonski quenching. Photoinduc electron de lifetimes, ir Fluorescen radiative m Energy trat		encies and cular PET. Trivial or y transfer.	3	
IV		Organic p Light harve and accep introductio devices, e materials;	hotonic and electronic materials esting, charge separation and transport, elect tors, light conversion and energy transfe n to organic photovoltaics and other lectrochemical sensors, Organic electrolu Aggregation Induced Emission (AIE) and Activated Delayed Fluorescence (TAD	er devices, PET-based iminescent quenching,	3, 4	

r		
	Temperature Phosphorescence (RTP), architecture and structure	
	of Organic Light Emitting Diodes (OLEDs), and field effect	
	transistors, semiochemistry and sensing (photophysical,	
	colorimetric and electrochemical sensors), molecular rectifiers.	
V	Organic molecular machines	3, 4
	Psuedorotaxanes, rotaxanes and catenanes; Rotaxanes and	
	Catenanes Involving $\pi - \pi$ Stacking Interactions, Hydrogen	
	Bonded Rotaxanes and Catenanes, Metal and Auxiliary Linkage	
	Approaches to Catenanes and Rotaxanes, Molecular Necklaces,	
	systems featuring charge-transfer and H-bonding interactions,	
	molecular logic, molecular analogues of mechanical machines,	
	crystalline machines, surface mounted machines, liquid crystal	
	machines, an introduction to artificial molecular machines,	
	molecular scissors	
VI	Metal Organic Frameworks and Porous Organic Materials	5
	Coordination polymers, porous and cavity-containing structures,	
	metallic clusters of MOFs, Design and synthesis of MOFs,	
	Factors affecting synthesis of MOFs; solvents, effect of	
	temperature and pH, Factors affecting the stability of MOFs,	
	Major applications: Catalysis, Hydrogen storage, Stimuli-	
	Responsive MOFs for drug delivery, sensors. Design principle of	
	porous organic polymers, Types of porous polymers; micro-,	
	meso- and macro-, Microporous polymers; synthetic	
	methodologies; Hyper-crosslinked porous polymers, Conjugated	
	microporous polymers and Covalent organic frameworks,	
	Applications of porous polymers (gas storage and adsorption, and	
	catalytic applications).	

References

- Thomas J. J. Müller, Uwe H. F. Bunz (Eds) "Functional Organic Materials: Syntheses, Strategies and Applications", Wiley-VCH, 2007.
- Jonathan W. Steed and Jerry L. Atwood "Supramolecular chemistry", Wiley-VCH, 2nd ed, 2017.
- Asim K Das and Mahua Das "An Introduction to Supramolecular Chemistry", CBS, 2017.
- Lakowicz, J. R. "Principles of Fluorescence Spectroscopy", 3rd Ed., Springer, New York, 2006.
- Kavarnos, G. J. "Fundamentals of Photoinduced Electron Transfer", VCH publishers, 1993.
- Valeur, B B. "Molecular Fluorescence: Principles and Applications", Wiley-VCH Verlag.
- Stefan Kaskel "The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization, and Applications", vol 1, Wiley-VCH, 2016.
- David Farruseng, "Metal Organic Frameworks: Applications from catalysis to gas storage", Wiley-VCH, 2011.
- Shilun Qiu and Teng Ben, "Porous Polymers: Design Synthesis And Applications", RSC, 2016.
- Guangshan Zhu and Hao Ren, "Porous Organic Frameworks: Design, Synthesis and Their Advanced Applications", Springer, 2015.

Further Reading

- Handbook of fullerene science and technology, Eds. Xing Lu, Takeshi Akasaka, Zdenek Slanina, Springer Singapore, 2021.
- Han, J., & Gao, C. (2010). Functionalization of carbon nanotubes and other nanocarbons by azide chemistry. Nano-Micro Letters, 2 (3), 213-226.
- Zhang, W., Sprafke, J. K., Ma, M., Tsui, E. Y., Sydlik, S. A., Rutledge, G. C., & Swager, T. M. (2009). Modular functionalization of carbon nanotubes and fullerenes. Journal of the American Chemical Society, 131 (24), 8446-8454.
- Handbook of Aggregation-induced Emission, Eds. Youhong Tang, Ben Zhong Tang, Wiley-VCH, 2022.
- Hagen Klauk, 302223 Organic Electronics: Materials, Manufacturing and applications 302224, Wiley-VCH, 20062.
- Review articles Aprahamian, I. (2020). The future of molecular machines. ACS central science, 6(3), 347-358; Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T., &Nussbaumer, A. L. (2015). Artificial molecular machines. Chemical reviews, 115(18), 10081-10206.
- Soni, S., Bajpai, P. K., & Arora, C. (2020). A review on metal-organic framework: Synthesis, properties and application. Characterization and Application of Nanomaterials, 3 (2), 87-106.
- Qiu, S., & Ben, T. (2015). Porous polymers: design, synthesis and applications. Royal Society of Chemistry.
- Weber, J., & Meng, Q. B. (2002). Microporous polymers: Synthesis, characterization, and applications. Encyclopedia of Polymer Science and Technology, 1-4
- F. Vögtle "Supramolecular chemistry", John Wiley and Sons, 1993

Model Question Paper

FIRST SEMESTER M.Sc. DEGREE EXAMINATION Branch: CHEMISTRY

CHE-DE-528 A ORGANIC FUNCTIONAL MATERIALS

Time: 3 hours

Max. Marks: 60

SECTION-A

Answer **any 10** questions. **Each** question carries **2** marks

- 1. Give 2 examples of fullerene functionalization.
- 2. Give one synthetic method for graphene.
- 3. Give an example for an organic charge transfer complex.
- 4. Illustrate the bonding effects in polyacetylene which imparts conductivity.
- 5. Explain FRET phenomenon.
- 6. How can quantum yields be calculated?
- 7. Illustrate a supramolecular D-PS-A system.
- 8. Explain TADF.

- 9. Explain the functioning of an OLED.
- 10. What is meant by a molecular logic gate?
- 11. Explain the synthesis of a MOF.
- 12. What are the factors which affect MOF stability?

SECTION-B

Answer any 6 questions. Each question carries 4 marks

- 13. Explain the inclusion property of carbon nanotube, providing an example.
- 14. Differentiate between SWCNT and MWCNT.
- 15. How are polypyrroles synthesized? Explain their conducting property.
- 16. Explain and illustrate the Jablonski diagram.
- 17. Discuss the synthesis of [2] catenane.
- 18. Give the applications of MOF.
- 19. How are porous organic polymers classified?
- 20. What are the synthetic strategies for MOF's?

SECTION-C

Answer any 2 questions. Each question carries 8 marks

- 21. Discuss about rotaxane synthesis by self-assembly approach.
- 22. Explain a light conversion molecular device providing suitable example and its application.
- 23. Briefly explain the properties and synthetic approaches to rotaxanes and psuedorotaxanes.
- 24. Explain the process of AIE. Give examples and discuss the quenching.

THIRD SEMESTER

1.	Semester	3					
2.	Course Title	Inorganic Chemistry III					
3.	Course Code	CHE-CC-531					
4.	Credits	3					
5.	CO: On completion o	f the course, students should be able to:	TL	KL	PSO No.		
		amentals of solid state chemistry and X-ray	2-Un,	FK	PSO1, PSO3		
	diffraction		4-An				
	2. Explain and comp	are solid properties based various binding	2-Un,	FK,	PSO1, PSO3		
	forces and imperfe	ections in solids	4-An	СК			
	3. Describe and app	ly the basics of electrical and magnetic	2-Un,	FK,	PSO1, PSO3		
	properties of solid	properties of solids 3-Ap					
		4-Ai					
		4. Examine and correlate the solid state properties with real 2-U					
	life materials						
	-	bout the chemistry of open and closed	2-Un,	FK	PSO1, PSO3		
	-	nds of important non-metallic elements	4-An				
		amine the structure and properties of	2-Un,	FK,	PSO1, PSO3		
MOD	various metallic cl	usters	4-An	СК			
No	COURSE CONTENT			CO No.			
I	Introduction to Solid	Bravais		CO1			
	lattices. Crystal syn	nmetry. Point groups and space groups.	Miller				
	indices. Reciprocal la	attice concept. Close packed structures: BC	CC, FCC				
		ordination number. X Ray diffraction by c	•				
		ls. Transmission and reflection grating.					
		methods. Powder, rotating crystal, oscillati					
	-	s. Indexing and determination of lattice ty	•				
	Point, line and plane	of cubic crystals. Structure factor. Crystal c	lefects:				
II		and Properties: Binding forces in solids		CO2,CO3,CO4			
		ial energy field. Lattice energy. Born theo			52,003,004		
	• •	Aolecular, ionic, covalent, metallic and hy	•				
	-	ee electron theory and band theory of	-				
		rs and semiconductors. Mobility of charge c					
	Hall effect. Electron	s and holes. Imperfections and nonstoichi	ometry				
	(oxides and sulphid	es). Techniques of introducing imperfect	ions in				
	solids.Electrical prop	perties of solids: Conductivity of pure	metals.				
		Photoconductivity. Photovoltaic effect. Di					
		tricity and ferroelectricity. Magnetic prope					
	solids: Diamagn						
	_	antiferromagnetism. Lasers and their applica					
III	-	erials and applications: Popular and so			CO5		
		echnology; Fabrication of nanomaterials-top					
		ods; Different types of nanostructures- 0D,					
	2D materials- nar	oparticles, nanorods, nanocombs, nan	otubes,				

	nanowires and quantum dots, semiconductor nanoparticles; Carbon based nanomaterials and applications-Fullerene, graphene, carbon nanotubes and diamondoidnanomaterials; Nonocomposites- natural, organic polymer, metal and ceramic nanocomposite; Nanomaterials in various applications-Magnetic nanoparticle for information storage applications, Light-emitting devices based on direct band gap semiconductor nanoparticles. Nanomaterials for energy applications- fuel cell, photovoltaic and rechargeable batteries. Nanometerials in biomedical applications.	
IV	Structures of Sulphur, Nitrogen, Phosphorus and Silicone Compounds: Sulphur Nitrogen compounds: Tetrasulphurtetranitride, disulphurdinitride and polythiazyl. SxNy compounds. S-N cations and anions. Other S-N compounds. Sulphur phosphorus compounds: Molecular sulphides such as P4S3, P4S7, P4S9 and P4S10. Phosphorus- nitrogen compounds: Phosphazines. Cyclo and linear phosphazines. Other P-N compounds. Silanes, silicon halides, silicates; Classification and structure, silicones.	CO6
V	Structure of Boron Compounds: Boron hydrides: Reactions of diborane, and its structure and bonding. Polyhedral boranes: Preparation, properties, structure and bonding. The topological approach to boron hydride structure. Styx numbers. Wade's rules. Carboranes: Closo, nido and arachnocarboranes. Metalloboranes and metallocarboranes. Organoboron compounds and hydroboration. Boron-nitrogen compounds: Borazine, substituted borazines and boron nitride.	CO6
VI	Other Metal clusters: Factors favouring metal-metal bonds, Dinuclear compounds of Re, Cu and Cr, metal-metal multiple bonding in (Re2X8)2-trinuclear clusters, tetranuclear clusters, hexanuclear clusters. Carbonyl clusters-LNCCS and HNCCS, Isoelectronic and isolobal analogy, Wade-Mingos rules, cluster valence electrons. Polyatomic zintl anion and cations. Infinite metal chains. Isopoly acids of vanadium, molybdenum and tungsten. Heteropoly acids of Mo and W.	CO7
Refere		
	Adams, D, M. Inorganic Solids: An Introduction to Concepts in Solid State	Structural
2.	Azaroff, L. V. "Introduction to Solids", McGraw Hill.	
3.		
4.		Wiley.
5.		plac of Interscience
6.	Huheey, J. E. Keiter, E. A. and Keiter, R. L. "Inorganic Chemistry - Princi New York, 1999.	pies of interscience,
7.		
8. 9.	West, A. R. "Solid State Chemistry and its Applications", Wiley. Atkins, P. W. and Shriver, D. F. "Inorganic Chemistry", 5th Edn, OUP, 2009	
-	. Douglas, B. E. McDanial, D. H. and Alexander, J. J. "Concepts and N	
10	Chemistry", 3rd Edn, John Wiley, 2001.	
11	 L. H. Gabor, H. F. Tibbals, J. Dutta, J. J.Moore, Intoduction to nanotechnology, CRC press, 2009. 	o nanoscience and
12	. M. S. RamachandraRao and S. Singh, Nanoscience and nanotechnolog	y: Fundamentals to

 M. S. RamachandraRao and S. Singh, Nanoscience and nanotechnology: Fundamentals to frontiers, Wiley, 2014.

Additional References

- 1. Emeleus, H. J. Sharpe, A. G. "Modern Aspects of Inorganic Chemistry", 4th Edn., ELBS, 1973.
- 2. Holleman, A. F. and Wiberg, E. "Inorganic Chemistry", Academic press, 2001.
- 3. Kittel, C. "Introduction to Solid State Physics", Wiley.
- 4. Lee, J. D. "Concise Inorganic Chemistry," 4th Edn., Wiley-India, 2008.
- 5. Purcell, K.FandKotz, J. C. "Inorganic Chemistry," Holt-Saunders, 2010.

Model Question Paper

THIRD SEMESTER M.Sc. DEGREE EXAMINATION Month Year Branch: CHEMISTRY CHE-CC-531: INORGANIC CHEMISTRY III

Time: 3 hours

Max. Marks: 60

SECTION-A

Answer any 10 questions. Each question carries 2 marks

- 1. Explain the basis for classification of lattices into 7 crystal systems and 14 Bravais lattices.
- 2. Calculate the number of atom in a unit cell of BCC and FCC crystal structure.
- 3. Discuss the defect structure in non-stoichiometric sulphides.
- 4. What are the similarities and differences between ferrimagnetism and antiferromagnetism ?
- 5. What is meant by a 2D nanomaterial ? Give example.
- 6. Explain with example 'quantum confinement'.
- **7.** Discuss the structure of S_4N_4 .
- 8. Describe the structure of P_4S_9 and P_4S_{10} .
- 9. Find styx numbers $forB_6H_{10}$.
- 10. Even though borazine is isoelectronic with benzene, borazine is far more reactive than benzene. Why ?
- 11. Predict the number of metal-metal bonds in Co₂(CO)₈.
- 12. Establish the isolobal analogy between CH₃ and Mn(CO)₅.

SECTION-B

Answer **any 6** questions. **Each** question carries **4** marks

- 13. Differentiate between FCC and HCP close packed structures.
- 14. What are intrinsic and extrinsic semiconductors ?
- 15. What is superconductivity and critical transition temperature ?
- 16. Explain with example 'bottom-up' approach of nanomaerial synthesis.
- 17. Discuss the bonding and aromaticity in cyclic phosphazenes.

- 18. Differentiate closo and nido carboranes with examples.
- 19. Compare the stability of o- and p- Dicarbadodecarborane.
- 20. Discuss the different types of bonding modes of carbonyl ligands in LNCCs.

SECTION-C

Answer any 2 questions. Each question carries 8 marks

- 21. Differentiate between conductors, insulators and semiconductors based on band theory of solids.
- 22. i) Derive Bragg's equation.ii) Discuss about the classification of silicates based on their structures.

(4 + 4)

- 23. Discuss the energy and biomedical applications of nanomaterials.
- 24. i) Write a note on the application of Wade's rules in predicting the structures of boranes.
 - ii) Discuss the bonding in $[Re_2Cl_8]^{2-}$.

(4 + 4)

1.	Seme	ster	3			
2.	Cours	e Title	Organic Chemistry III			
3.	Cours	e Code	CHE-CC-532			
4.	Credit	:S	3		-	_
5.	CO On co	mpletion of t	he course, students should be able to:	TL	KL	PSO No.
			gents and organic reactions in a logical manner for cycles and carbocycles	1-R, 3-Ap	FK, CK	1, 11
	2. Us	e retrosynthe	etic method for the logical dissection of complex and devise synthetic methods	4-An, 5-E, 6-C	FK, CK, МК	1, 111
	3. Cho subst		ate oxidation/reduction reagent as needed for the	3-Ap, 4-An	FK, CK	II, III, VI
	4. Identify the class of natural product and predict the biosynthetic1-R,pathway4-An,6-C					11, 111
		cidate the str hemical degra	FK, CK	I, VI		
	6. Comprehend the chemistry of amino acids, nucleic acids, proteins1-R,and peptides2-Un					1, 11
MOE No	DULE	COURSE CO	NTENT		CO No.	
	1	heterocyclic Trivial and S compounds membered pyrrole, th including Pa Pictet-Spen nucleophilic quinoline a heteroatom Volhardt re metathesis.	n of Carbocyclic and Heterocyclic Rings - Import compounds, Structure and aromaticity of heter systematic Hantzsch Widman Nomenclature of heter , Different methods of ring synthesis, Three a heterocycles, Named reactions for synthesis of ophene, pyridine, indole, quinoline and isoqual-Knorr, Feist-Benary, Fischer indole, Hantzsch, gler and Bischler-Napieralski methods, Electroph substitutions of 5-membered, 6-membered, nd isoquinoline rings, Heterocycles with more th – synthesis and reactivity. Pauson-Khand re- saction, Bergman cyclization, Nazarov cyclization	ocycles, rocyclic nd four furan, uinoline Skraup, ilic and indole, an one eaction, Olefin	1	
	II Organic Synthetic Strategies - Introduction to retrosynthetic analysis. Linear and convergent synthesis, Synthons, functional group interconversions (FGI), Role of protecting groups in organic synthesis, Enolate and enamine alkylation reactions including Stork-enamine reaction, Dipole inversion - Umpolung. Organometallic reagents like Grignard, alkyl lithium and Gilman Reagents and their utility, Organocuprates, DABCO and Baylis-Hilman reaction, Role of palladium in organic synthesis, Heck, Sonogashira, Suzuki, Stille and Negishi coupling reactions. Glaser coupling, Tebbe olefination, Sakurai reaction, Brook rearrangement, Mitsunobu reaction, PPh3-CBr4 reagent.				1, 2	

	Reagents for oxidation - Oxidations using manganese and chromium reagents, PCC, PDC Collins and Jones reagents, Etard reaction, Use of SeO2, MnO2, Ag2CO3 and lead tetraacetate, DMSO based reagents - Swern oxidation, Oppenauer oxidation. Oxidation of alkenes - OsO4, RuO4, HIO4, ozone and peracids. Sharpless asymmetric epoxidation, Woodward and Prevost hydroxylations, Dehydrogenation to aromatic compounds. Baeyer-Villiger oxidation, Dakin reaction.	3
IV	Reagents for reduction - Catalytic hydrogenation and stereochemistry. Hydrogenation catalysts and their selectivity. Adam's catalyst, Rosenmund reduction, Lindlar catalyst, Wilkinson's catalyst, Homogeneous hydrogenations. Fe, Zn, Na and Li reductions. Dissolving metal reductions – Clemmenson reduction, metal-alcohol reductions, Birch reduction, Hydride transfer reductions – MPV reduction, Reduction using NaBH4, LAH, LAH-AlCl3, DIBAL-H and NaCNBH3, selectrides. Reductions using borane reagents, hydroboration, Luche reduction, Wolff Kishner and diimide reductions	3
V	Natural Products Chemistry - Classification, Isolation, identification, typical examples and structures of secondary metabolites - Alkaloids, Terpenoids, Steroids, Prostaglandins, Coumarins and flavones. Degradation methods for structural elucidation – Hoffmann and Emde methods, examples of alkaloids, Total synthesis of reserpine, Classification of terpenes, Cationic rearrangements and formation of cyclic terpenes, Structural elucidation of santonin, Structure and importance of quercetin; 🛛-carotene and ascorbic acid. Synthesis of Vitamin C from glucose, Biosynthesis of fatty acids and polyketides by acetate pathway, monoterpenes by mevalonic acid pathway and alkaloids by shikimic acid pathway, biosynthesis of higher terpenes and steroids. Structure of cholesterol and other important steroids, Barbier Wielander degradation and Blanc rule	4, 5
VI	Chemistry of nucleic acids and proteins - Amino acids, proteins and peptides: Structures and synthesis of amino acids – Strecker synthesis, Azlactone synthesis and enantioselective synthesis. Reactions of amino acids due to the NH2 group, COOH group and its reaction with ninhydrin, Structure of proteins, Introduction to enzyme and co- enzymes, structure and relevance of NAD, chymotrypsin, pyridoxal and thiamine, Peptide bond formation methods, amino and carboxy protection in SPPS. ADP and ATP. Automated polypeptide and oligonucleotide synthesis. Structure of polysaccharides including starch, cellulose, glycogen and chitin.	6
Reference	25:	
1. Tł	nomas L. Gilchrist "Heterocyclic Chemistry" Pearson, 2013 S. Kalsi "Organic Synthesis through Disconnection Approach" MEDTEC, 2014	4
20	arruthers, W. "Some Modern Methods of Organic Synthesis", Cambridge 204.	e University Press,
	anson, J. R. "Natural Products: Secondary Metabolites", RSC	
5. M	lann, J and others, "Natural Products: Chemistry and Biological Significance"	. Longman 2006
1		

Additional References:

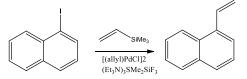
- 1. Harbourne, J. B. "Phytochemical Methods" Chapman Hall. 1998
- 2. Warren, S. "Organic Synthesis: The Disconnection Approach", John Wiley, 2004.
- 3. Hanson, J. R "Organic Synthetic Methods" RSC , 2002.
- 4. Norman, R. O. C. and Coxon, A. "Modern Synthetic Reactions", Chapman Hall, 1993
- 5. Mackie, R. K., Smith, D. M. and Aitken, R. A. "Guidebook to Organic Synthesis", 3 Edn, Longman.1990
- 6. Krishnaswamy, N. K. "The Chemistry of Natural Products," Universities Press 2010
- 7. Mann, J. "Chemical Aspects of Biosynthesis", Oxford primer 20, OUP.1994
- 8. Simmonds, R. J. "Chemistry of Biomolecules", RSC. 1992
- 9. Smith, M. B. "Organic Synthesis", 2 Edn, McGraw Hill. 1994.

Model Question Paper

THIRD SEMESTER M.Sc. DEGREE EXAMINATION 2020

Branch: CHEMISTRY

CHE-CC-532 : ORGANIC CHEMISTRY III

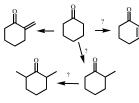

Time: 3 hours

Max. Marks: 60

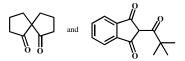
SECTION-A

Answer **any 10** questions.**Each** question carries **2** marks

- 1. Illustrate mechanism for the conversion of pyrrole to 3-chloro pyridine.
- 2. Illustrate the product formed when 2-ethoxy-1,4-pentadiene-3-one is treated with aluminium chloride at room temperature in acetonitrile.
- 3. Explain the mechanism of the reaction



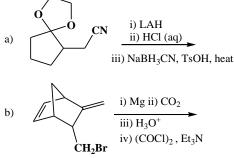
- 4. Illustrate the retrosynthetic analysis for paracetamol.
- 5. How do you convert 2-butyne to (i) cis-2-butene and (ii) trans-2-butene
- 6. What product is formed when trans-2-butene is treated with iodine and silver acetate under anhydrous conditions?
- 7. An aldehyde can be coupled with ethyl acrylate in presence of DMAP. Illustrate the reaction with mechanism.
- **8.** What reagents are used for conversion of i) ethyl cinnamate to cinnamyl alcohol and ii) ethyl benzoate to benzaldehyde?
- 9. Suggest and illustrate a method to convert bromo benzene to biphenyl.
- 10. How are fatty acids biosynthesized in living cells?
- 11. Illustrate formation of shikimic acid in cells.
- 12. Depict the Strecker synthesis of aminoacids.


SECTION-B

Answer any 6 questions. Each question carries 4 marks

- 13. What reagents are required to convert cyclohexanone to i) cyclohexane-1,2-dione ii) cyclohexane iii) cyclohexanol iv) cyclohexyl amine?
- 14. Illustrate a method each for the synthesis of indole and isoquinoline
- 15. What reagents are required for the following conversions?

16. Give a retrosynthetic analysis and suggest a synthetic strategy for the following molecules



- 17. Illustrate biosynthesis of monoterpene.
- 18. Explain the secondary and tertiary structure of proteins.
- 19. Explain Barbier Wielander degradation and Blanc rule
- 20. Predict the product formed when isoquinoline is treated with lithium in liquid ammonia.

SECTION-C

Answer any 2 questions. Each question carries 8 marks

- 21. Predict the product formed i) dibenzoyl methane reacts with hydroxylamine and ii) Nchloro-N-methylpentamine is exposed to light in acid medium.
- 22. Illustrate i) Mitsunobu reaction ii) Glaser coupling iii) Heck reaction and iv) Suzuki polymerization.
- 23. What products are formed in the following cases

24. Illustrate the retrosynthetic approach and major synthetic strategies adopted for synthesis of reserpine by Woodward.

КL ;3- СК,РК ; СК ; СК ; СК ; СК ; СК ; ГК,СК	PSO No. (1, 11, 111 11,111, V1 11, 111					
;3- CK,PH ; CK ; CK ; CK ; CK ; FK,CK ; FK,CK	(, , , , VI					
;3- CK,PH ; CK ; CK ; CK ; CK ; FK,CK ; FK,CK	(, , , , VI					
;3- CK,PH ; CK ; CK ; CK ; CK ; FK,CK ; FK,CK	(, , , , VI					
;3- CK,PH ; CK ; CK ; CK ; CK ; FK,CK ; FK,CK	(, , , , VI					
; CK ; CK ; CK ; CK ; FK,CK ; FK,CK	II,III, VI					
; СК СК,РН FK,СК СК ; FK,СК						
; СК СК,РН FK,СК СК ; FK,СК						
; CK CK,PH FK,CK CK ; FK,CK	,					
СК,РН FK,СК СК ; FK,СК	11, 111					
CK,PH FK,CK CK ; FK,CK						
FK,CK CK ; FK,CK	(I,II					
СК ; FK,Ск						
; FK,CK						
	1, 11					
	(, ,					
and electrodes 3-Ap ODULE COURSE CONTENT						
	CO No.					
equilibrium and spontaneity. The Clausius inequality, Maxwell relations. The						
third law of thermodynamics. Need for the third law. Nernst heat theorem.						
parent exceptions to third law. Applications of third law. Thermodynamics of eversible processes: Simple examples of irreversible processes. General theory						
•						
unterence	•					
systems	. 2					
-						
-						
harmonio						
particles ir	n					
e for the	2					
r partitior	1					
• •						
ry of heat						
Theory	F 2					
•						
	-					
•						
la at du ante monto de la at du ante monto de la atratación de la atrataci	at theorem dynamics of					

	Structure of liquids, X-ray diffraction studies, Short range order, radial distribution function, configurational partition function for liquids. Theories of liquids state. Free space and van der Waals theories. Lennard-Jones theory of melting. Specific heats and communal entropy of liquids.	
IV	Order and molecularity of reactions. Time dependency of order. Complex reactions: Reversible, consecutive, concurrent and branching reactions. Free radical and chain reactions. Steady state treatment. Reactions like H2-Cl2 and H2-Br2. Decomposition of ethane, acetaldehyde and N2O5. Rice-Herzfeld mechanism. Unimolecular reaction. Lindemann treatment. Semenoff-Hinshelword mechanism of chain reactions and explosion. Kinetics of fast reactions: Relaxation method. Relaxation spectrometry. Flow method, Stopped-flow technique. Shock method. Pulse method. Flash photolysis. Factors influencing reaction rates in solution. Salt effects. Curtin-Hammett equation, kinetic isotope effect. Theories of reaction coordinate, TransitionState theory, comparative study of the theories. Kinetics of reactions in solution. Diffusion controlled reactions. Ionic reactions and effect of ionic strength, Effect of solvents, effects of pressure on velocity of gas reactions.	4,5
v	Catalysis: Mechanism and theories of homogeneous and heterogeneous catalysis. Acid-base catalysis. Skrabal diagram, Bronsted catalysis law, prototropic and protolytic mechanisms, acidity function. Enzyme catalysis. Michaelis-Menton equation, effect of pH and temperature on enzyme catalysis. Mechanism of heterogeneous catalysis- Unimolecular and Bimolecular surface	6
	reactions. Langmuir-Hinshelwood mechanism. Introduction to photochemistry: Laws of photochemistry. Quantum yield. Radiative and non-radiative transitions. Fluorescence and phosphorescence. Intensity and concentration. Fluorescence indicators. Quenching of fluorescence. Chemiluminescence. Explosion reaction. Kinetics of photochemical reaction of H2and Cl2, and H2and Br2.	
VI		7
	Types of electrodes. Electrochemical cells. Liquid junction potential and its determination. Evaluation of thermodynamic properties and activities. Electrical double layer, and its various models. Electrode-electrolyte interface. Electrokinetic phenomena. Current-potential curves. Over potential and its theories. Butler-Volmer equation. Tafel and Nernst equations. Corrosion and methods for prevention. Porbaux diagram and Evans diagram. Introduction to polarography, cyclic voltammetry. Theory and working of Fuel Cells.	
Reference		ı
1. Enge	el T. and Reid, P. Thermodynamics, Statistical Thermodynamics, & Kinetics, 3rd editions rson Education.	on, 2013,
2. Lako	owicz, J. R. Principles of Fluorescence Spectroscopy, 3rd edition, 2006, Springer.	
3. Hou	ston, P. A., "Chemical Kinetics and Reaction Dynamics", Dover, 2006.	
4 D.		

4. Panchenkov, G. M. and Labadev, V.P., "Chemical Kinetics and Catalysis", MIR Publishing.

- 5. Laidler, K. J. "Chemical Kinetics" 3rd Edition, Prentice Hall, 1987.
- 6. Moore, J. W. and Pearson, R. G. "Kinetics and Mechanism", 3rdedition, 1981, John Wiley and Sons.
- 7. Bokris, J. O. M.; Reddy, A. K. N., "Modern Electrochemistry", Wiley-Interscience, 1972.
- 8. Glasstone, S., "Introduction to Electrochemistry", East West Press Pvt Ltd. 1965.

Additional References:

- 1. Daniels, F. and Alberty, R. A., "Physical Chemistry", 4th Edition, Wiley Eastern, 1976.
- 2. Atkins, P. W., "Physical Chemistry", 9th Edition, OUP, 2010.
- 3. Berry, R. S.; Rice, S. A. and Ross, J. "Physical Chemistry", Oxford University Press, Oxford, 2000.
- 4. Sears, F. W., "Introduction to Thermodynamics, Kinetic Theory of Gases and Statistical mechanics", 2nd Edition, Addison Wesley, 1972.

Model Question Paper

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, Month Year Branch: CHEMISTRY CHE-CC-533: PHYSICAL CHEMISTRY III

Times: 3 Hours

Max. Marks: 60

SECTION- A

Answer **any 10** questions. Each question carries **2** marks.

- 1. Define active transport. Explain its significance.
- 2. State and explain Onsager reciprocal relations.
- 3. Distinguish between microstate and macrostate.
- 4. Show that molecular partition function is the product of the partition functions for various degrees of freedom.
- 5. Compare the free space and van der waals theories of liquid state.
- 6. Calculate the pressure and the energy of a 3D non-interacting Boson gas below its BEC critical temperature?
- 7. Explain primary salt effect.
- 8. Radioactivity of a sample (z=22) decreases 90% after 10 years. What will be the half life of the sample.
- 9. What is the effect of pH on the rate of an enzyme catalyzed reactions.
- 10. Differentiate between inter system crossing and internal conversion.
- 11. Calculate the thickness of ionic atmosphere in 0.01 molal aqueous KCl at 25°C. Dielectric constant of water is 78.5.
- 12. Distinguish between inner and outer Helmholtz plane.

SECTION-B

Answer **any 6** questions. Each question carries **4** marks.

- 13. a) Define phenomenological coefficient. Show that direct coefficients always dominate indirect coefficients.
- 14. Use third law of thermodynamics, show that absolute zero of temperature is unattainable.
- 15. Explain the term dilute system. Show that all particles follow Maxwell-Boltzmann statistics under dilute system conditions.
- 16. Calculate the heat capacity of diamond at 1000 K. Its characteristic temperature is 1860 K.
- 17. Explain Lennard Jones theory of melting.
- 18. Derive the distribution law for velocity of gases in two dimensions.
- 19. Give the steady state treatment for the reaction $H_2+Br_2 \rightarrow 2HBr$

20. The emf of the cell $Pt \begin{vmatrix} H_{2(g)} \\ Hcl \\ 0.01m \end{vmatrix} AgCl_{(S)} Ag$ was found to be 0.3524 V at 25°C. Calculate the

activity coefficient of 0.01m HCl. The standard electrode potential of $\bar{Cl}|AgCl_{(S)}|Ag$ is 0.2224 V.

SECTION-C

Answer any two question. Each question carries 8 marks

- 21. a) Rationalize thermal osmosis and thermal diffusion using irreversible thermodynamics.b) Discuss briefly Bose-Einstein condensation. (4+4)
- 22. a) Explain the Lindemann theory for unimolecular reactions.
 b) Give the kinetics for the following reaction 2H₂ (g)+O₂ (g) ---> 2H₂O (g) (4+4)
- 23. a) Compare the postulates of Maxwell-Boltzmann and Fermi-Dirac statistics.b)Derive Butler-Volmer equation. Discuss. (4+4)
- 24. a) Discuss the application of Porbaux diagram in predicting the stability of metals.
 - b) Provide a comparison of the free space and vander Waals theories of liquid state.

(4+4)

1.	Semester	3			
2.	Course Title	Inorganic Chemistry Lab III			
3.	Course Code	CHE-CC-534			
4.	Credits	3			
5.		he course, students should be	TL	KL	PSO No.
	1. Implement the ana to the real cases	lytical techniques learned earlier	3-AP 5-E	СК,РК МК	PSO4, PSO5 PSO6
	 Describe and execute ion-exchange separation 2 technique 4 			СК, РК МК	PSO4, PSO5 PSO6
	3. Execute inorganic complexes	synthesis of model coordination	4-An 5-E	РК	PSO5 PSO6
	•	pare the electronic properties of n the given experimental results	3-Ap 4-An 5-E	РК, МК	PSO3 PSO4 PSO5
		ate analytical and spectroscopic ze and analyse various inorganic	3-AP 4-An 5-E	РК, МК	PSO4 PSO5 PSO6
MOD. No	COURSE CONTENT			CO	No.
I	Analysis of some typic and monazite.	al ores: Carbonate ore, sulfate ore	, ilmenite	C	D1
II		: Estimation of nitrogen in ar ations in synthetic fertilizers	nmonium	CO1	
Ш	Ion exchange separation	n of binary mixtures: Zn & Mg and (Co & Ni.	C	52
IV	Synthesis of [Ti(urea)6 electronic property wit]I3: An air stable d1 Complex. Con h [Ti(H2O)6]3+	npare the	CO3, CO	D4, CO5
V		transition metal complexes		C	D3
VI		orepared metal complexes by UV and electrical conductivity	V-VIS, IR,	CO4,	, CO5
Referen 1. 2. 3.	nces: Drago, R. S. "Physical M Furman and Welcher, "	ethods in Inorganic Chemistry", Affi Standard Methods of Inorganic Anal Iger, "Volumetric Analysis", Interscie	ysis", Van I		

4. Kolthoff, I. M., Elving, V. J. and Sandell, "Treatise on Analytical Chemistry", Interscience.

5. Palmer, W. G. "Experimental Inorganic Chemistry", CUP.

6. Schoder, W. R. and Powell, A. R. "Analysis of Minerals and Ores of Rare Elements".

7. Weining, I. and Schoder, W. P. "Technical Methods of Ore Analysis".

1.	Seme	ster	3			
2.	Cours	e Title	Functional Organic Materials			
			Chemistry Lab III			
3.	Cours	e Code	CHE-CC-535A			
4.	Credit	S	3			
5.	со			TL	KL	PSO No.
		· ·	he course, students should be able to:			
			e various functional groups present in organic	3-Ар,	СК, РК	II, III, V
		olecules		4-An		
	2. To d	do coupling re	eactions	3-Ар	FK, PK	V
	3. To i	ecord UV and	d emission spectra and calculate quantum yield	3-Ар,	СК, РК	III, IV
MOD No	DULE	COURSE CO	INTENT		CO No.	
	I	Estimation of	of esters and acids using acid - base titration method	ł.	1, 2	
	II	Estimation	of reducing sugars by using freshly prepared Fe	ehling\s	\s 1, 2	
		solution				
		Estimation of phenols, amines and ketones using iodometric titration method		1, 2		
	IV	To do Palladium based coupling reaction		1, 2		
	V	To prepare	luminescent molecules		3	
,	VI	To record l	JV and emission spectra of molecules synthesized	above	3	
		and to calcu	late quantum yields of molecules synthesized			
	Ahluw Unive Vishno	valia, V. K. a rsities Press. pi, A. K. "Adva	Sharma, R. M. "A Laboratory Manual of Milk Inspect and Aggarwal, R. "Comprehensive Practical Organ anced Practical Organic Chemistry" Vikas Publishing, e, "Fundamentals of photochemistry", New Age Inter	ic Chem 2009	nistry", V	•

e Title					
Course Title Physical Chemistry Lab III					
e Code	CHE-CC-536				
5	3				
CO KI				PSO No.	
On completion of the course, students should be able to:					
conductomete	er to perform conductometric titrations, and to	2-Un;	СК,РК	IV; V; VI	
-		3-Ap			
orm potentior	netric titrations	3-Ap	СК,РК	IV; V; VI	
orm polarogra	phic estimations	3-Ap; 5-Ev	СК,РК	IV; V;VI	
orm flame pho	otometry or Karl-Fischertitrator estimations	3-Ap;5- Ev	СК,РК	V; VI	
		3-Ap; 6-Cr	РК,МК	V;VI	
erstand the ba	asic principles of lab techniques adopted in	2-Un	FK	V, VII,	
al Laboratories	s, monitor, record and present data in a			VIII	
fic form					
COURSE CON	TENT			CO No.	
acids and precipitation	bases. Conductometric titrations involving reactions. Equivalent conductance of sol	g acid-ba	se and		
Quinhydrone and precipit	electrode. Potentiometric titrations involving ation reactions. pH of buffer solutions. S	g acid-base	e, redox	2,6	
Polarography	: Polarographic estimation of cadmium,	zinc and	d lead.	3,6	
		2+. Compo	sition of	4,6	
Karl-Fischer ti and paints.	itrator: Estimation of water contents in pharma	ceuticals,	oils, fats	4,6	
VI Non-Evaluative experiments: 1. Preliminary Characterization of Battery- Charging Discharging efficiency 2. Preliminary Fuel cell characteristics 3. Photocatalysis-Dye degradation (Preliminary studies) 4. Redox potential Determination (Preliminary studies)				5,6	
	mpletion of the conductomete ire equivalent of form potention form polarogra form flame phote tial determinate e a basic under tial determinate erstand the bas al Laboratories fic form COURSE CON Conductances substances. Of acids and precipitation electrolytes a Potentiometr Quinhydrone and precipitation electrolytes a Potentiometr Quinhydrone and precipitation flame photor the mixtures. Karl-Fischer ti and paints. Non-Evaluativ 1. Prelin 2. Prelin	npletion of the course, students should be able to: conductometer to perform conductometric titrations, and to ire equivalent conductance form potentiometric titrations form polarographic estimations form flame photometry or Karl-Fischertitrator estimations e a basic understanding on photocatalysis and redox tial determination erstand the basic principles of lab techniques adopted in al Laboratories, monitor, record and present data in a fic form COURSE CONTENT Conductance: Verification of Onsagar equation. Solubility o substances. Oswald's dilution law. Basicity of acids. Dissoci acids and bases. Conductometric titrations involving precipitation reactions. Equivalent conductance of sol electrolytes and weak electrolytes. Potentiometry: Single electrode potentials of hydrogen and Quinhydrone electrode. Potentiometric titrations involving and precipitation reactions. pH of buffer solutions. S Determination of dissociation constant. Polarography: Polarographic estimation of cadmium, Composition of mixtures. Flame photometry: Estimation of Na+, K+, Li+, Ca2+ and Mg the mixtures. Karl-Fischer titrator: Estimation of water contents in pharma and paints. Non-Evaluative experiments: 1. Preliminary Characterization of Battery- Charging Disso 2. Preliminary Fuel cell characteristics	Impletion of the course, students should be able to: TL conductometer to perform conductometric titrations, and to re equivalent conductance 2-Un; 3-Ap form potentiometric titrations 3-Ap; 5-Ev form flame photometry or Karl-Fischertitrator estimations 3-Ap; 5-Ev form flame photometry or Karl-Fischertitrator estimations 3-Ap; 5-Ev e a basic understanding on photocatalysis and redox 3-Ap; 6-Cr tial determination 6-Cr lerstand the basic principles of lab techniques adopted in al Laboratories, monitor, record and present data in a fic form 2-Un Conductance: Verification of Onsagar equation. Solubility of sparingly substances. Oswald's dilution law. Basicity of acids. Dissociation cons acids and bases. Conductometric titrations involving acid-base precipitation reactions. Equivalent conductance of solutions of electrolytes and weak electrolytes. Potentiometry: Single electrode potentials of hydrogen and glass ele Quinhydrone electrode. Potentiometric titrations involving acid-base and precipitation reactions. pH of buffer solutions. Solubility of Determination of dissociation constant. Polarography: Polarographic estimation of cadmium, zinc and Composition of mixtures. Flame photometry: Estimation of Na+, K+, Li+, Ca2+ and Mg2+. Compo the mixtures. Karl-Fischer titrator: Estimation of water contents in pharmaceuticals, e and paints. Non-Evaluative experiments: 1. Pr	Impletion of the course, students should be able to:TLKLconductometer to perform conductometric titrations, and to 2-Un; 3-Ap2-Un; 3-ApCK,PKform potentiometric titrations3-ApCK,PKform polarographic estimations3-Ap; 5-EvCK,PKform flame photometry or Karl-Fischertitrator estimations3-Ap; 5-EvCK,PKform flame photometry or Karl-Fischertitrator estimations3-Ap; 6-CrCK,PKe a basic understanding on photocatalysis and redox tial determination3-Ap; 6-CrFKerstand the basic principles of lab techniques adopted in al Laboratories, monitor, record and present data in a fic form2-UnFKCOURSE CONTENTConductance: Verification of Onsagar equation. Solubility of sparingly soluble substances. Oswald's dilution law. Basicity of acids. Dissociation constants of acids and bases. Conductometric titrations involving acid-base and precipitation reactions. Equivalent conductance of solutions of strong electrolytes and weak electrolytes.Potentiometry: Single electrode potentials of hydrogen and glass electrodes. Quinhydrone electrode. Potentiometric titrations involving acid-base, redox and precipitation reactions. pH of buffer solutions. Solubility of AgCI. Determination of dissociation constant.Polarography: Polarographic estimation of cadmium, zinc and lead. Composition of mixtures.Flame photometry: Estimation of Na+, K+, Li+, Ca2+ and Mg2+. Composition of the mixtures.Non-Evaluative experiments: 1. Preliminary Characterization of Battery- Charging Discharging efficiency 2. Preliminary Fuel cell characteristics	

4. Daniels, F. and Mathews, J. H. "Experimental Physical Chemistry", McGraw Hill, 1970.

5. YadavJ. B., "Advanced Practical Chemistry", Krishna Prakashan Media, 2015.

1.	Seme	ster	3			
2.	Cours	e Title	Photophysical Processes And Application	S		
3.	Cours	e Code	CHE-DE-538			
4.	Credit	S	4			
5.	CO On co	CO On completion of the course, students should be able to: TL KL				
		1. Summarize and differentiate various photophysical processes in molecular systems			FK, CK	01, 02
		mplifies and di	4-An; 5- E	FK, CK	01, 02	
	3. Exp	lain the concep	ts and demonstrate the applications associ ectron transfer and energy transfer	iated 2-U; 3- Ap	СК	01, 02
		 Illustrate the techniques and instrumentation of fluorescence and other fast light induced processes / reactions 				01, 02
		al molecules ba	n molecular sensors for metal ions, anions a sed on various photo-chemical/-physical	and 4-An; 6- Cr	СК, МК	02, 03
		6. Describe and compare the properties and applications of light2-U; 3-active semiconductor nanoparticles and lanthanide based systemsAp; 5-E				
		nprehend the p lexes and AIE lu	roperties and applications of metal-ligand minogens	2-U; 4- An	СК, МК	01, 02
	8. Appreciate the processes happening in natural photosyntheitic systems				FK, CK	01, 02
		Elaborate reactions happening in artificial solar energy converting4-An; 5-CK,stems and compare it to those in natural photosynthetic systemsEMK				
MC No	DULE	COURSE CON	TENT			CO No.
	I Photophysical Properties of the Electronically Excited Molecules:Basic principles of photochemistry: Absorption of radiation-Beer Lambert's law. Electronic transitions. Frank Condon principle. Jablonski diagrams. Nonradiative transitions. Internal conversion and inter system crossing. Radiative transitions: Fluorescence emission, triplet states and phosphorescence. Absorption complexes. Charge transfer absorption. Excimers. Exciplexes. Delayed fluorescence. Chemiluminescence.					
	II Bimolecular Processes: Fluorescence quenching. Collisional quenching. Stern- Volmer equation. Static quenching Photoinduced electron transfer (PET): Concepts and theories, electron donors and acceptors, quantum yield, efficiencies and lifetimes, intermolecular, intramolecular and supramolecular PET. Fluorescence resonance energy transfer (FRET): Trivial or radiative mechanism; Forster and Dexter type energy transfer. Energy transfer versus electron transfer. Applications of electron transfer and energy transfer.					
	111	Incandescent monochroma	nd Instrumentation:Light sources, filters lamps and arc lamps, optical filters cors. Lasers as excitation sources: General el lasers, Solid state lasers (Ruby and No measurements: Steady-state fluore	s, spectrograph principles, Two, d/YAG) and gas	s and , three lasers.	4

]
	Luminescence quantum yield measurements, Time-resolved fluorescence	
	spectroscopy, single photon counting, Detection and kinetics of reactive	
	intermediates, Transient absorption spectroscopy: Nanosecond laser flash	
	photolysis and Picosecond laser flash photolysis.	
IV	Application of fluorescence in chemical sensing: Various approaches of	5
	fluorescence sensing, Fluorescent pH indicators, Fluorescent molecular sensors	
	based on ion or molecular recognition: Recognition units and topology,	
	recognition based on photoinduced electron transfer(PET), photoinduced	
	charge transfer (PCT), Excimer formation and disappearance and Forster	
	resonance energy transfer (FRET). Fluorescent sensors for Metal ions (based on	
	all above mentioned recognition mechanisms), Fluorescent sensors for anions	
	and neutral molecules.	
		67
V	Novel Fluorophores:Semiconductor Nanoparticles: Spectral properties of	6,7
	quantum dots, Labeling cells with quantum dots, Quatum dots and Resonance	
	Energy Transfer (RET), Lanthanides: RET with lanthanides, Lanthanide	
	nanoparticles, Near-infrared emitting lanthanides, Long-lifetime metal-ligand	
	complexes: Introduction to metal-ligand probes, Spectral properties of MLC	
	probes, Metal-ligand complex sensors, Aggregation induced emissive (AIE)	
	fluorophores: Mechanism of AIE and applications.	
VI	Solar Energy Conversion:Natural photosynthetic system: Light dependant	8,9
	reactions, photosynthetic reaction centre, Z-scheme of photosynthesis.	
	Artificial photosynthesis, conversion of solar energy to chemical and other	
	forms of energies. Solar water splitting. Photocatalytic hydrogen production,	
	Photocatalytic carbon dioxide reduction. Photovoltaic cells: Polymer solar cells	
	and dye sensitized solar cells. Photo-biochemical energy production.	
Refere		
	Lakowicz, J. R. "Principles of Fluorescence Spectroscopy", 3rd Ed., Springer, New Yorl	< 2006
	Valeur, B. B. "Molecular Fluorescence: Principles and Applications", Wiley-VCH Verlag	
		5
3.		ational (D)
4.	Rohatgi-Mukherjee, K. K. "Fundamental of Photochemistry", New Age Intern	ational (P)
_	Ltd.,New Delhi, 1986.	
5.	Turro, N. Ramamurthy, J. V. Scaiano, J. C. "Principles of Molecular Photochemistry",	University
	Science, Books, CA, 2009.	
6.	Gratzel, M. "Energy Resources through photochemistry and catalysis, Acade	mic Press,
	1983.Inc., New York, 1993.	
Additic	nal References:	
1.	,	20120984.
	http://dx.doi.org/10.1098/rsif.2012.0984, 2013	
	Depuy C. H. and Chapman, O. L. "Molecular Reactions and Photochemistry",	
3.	Feng,G. Kwok, R. T. K. Tang, B. Z. and Liu,B. "Functionality and versatility of ag	gregation-
	Induced Emission Luminogens", Appl. Phys. Rev., 4, 021307 (2017)GmbH, Weinheim,	2002.
4.	Mei, J. Leung, N. L. C.Kwok, R. T. K. Lam, J. W. Y. and Tang, B. Z. "Aggregation	on-Induced
	Emission: Together We shine, United We Soar" Chem Rev., 115, 11718-119	
	Prentice Hall of India Pvt. Ltd., 1988.	. ,
5.		
6.		
0.	support, the enclined y and ight , hove society of enclined y, cambridge, 1994.	

THIRD SEMESTER M.Sc. DEGREE EXAMINATION Month Year Branch: CHEMISTRY

CHE-DE-539: PHOTOPHYSICAL PROCESSES AND APPLICATIONS

Time: 3 hours

Max. Marks: 60

SECTION-A

Answer any 10 questions. Each question carries 2 marks

- 1. State and Explain Frank Condon principle.
- 2. Guanosine has a maximum absorbance of 275 nm. $\varepsilon_{275} = 8400 \text{ M}^{-1} \text{ cm}^{-1}$ and the path length is 1 cm. Using a spectrophotometer, you find that the absorbance at 275 nm is 0.70. What is the concentration of guanosine?
- 3. What is Stern-Volmer equation? How it is useful in distinguishing static and dynamic quenching?
- 4. Explain the concept of donor and acceptor in photoinduced electron transfer (PET) with suitable examples.
- 5. Which are the light sources used in the UV-Vis absorption spectrophotomerter?
- 6. Experimentally how can you characterise the triplet state of an organic chromophore?
- 7. What is a fluorescent pH indicator? Explain with an example.
- 8. Exemplify the concept of excimer based fluorescence sensor.
- 9. Luminescence lifetimes of metal-ligand complexes are usually high compared to that of pure organic fluorophores. Why?
- 10. How luminescence originates in quatum dots?
- 11. What is the function of redox couple in dye sensitized solar cell?
- 12. Write a note on photocatalytic carbon dioxide reduction.

SECTION-B

Answer any 6 questions. Each question carries 4 marks

- 13. Exemplify the concept of delayed fluorescence.
- 14. Briefly discuss about the phenomenon of chemiluminescence with suitable examples.
- 15. What is Fluorescence resonance energy transfer (FRET)? Briefly explain the Foster type energy transfer.
- 16. Briefly explain the principle of working of lasers.
- 17. Portrait the working of metal ion sensors based on any two different recognition mechanisms.
- 18. Briefly represent the mechanism of aggregation induced emission.
- 19. Quantum dots are useful candidates in bio-medical field. Justify the statement.

20. Briefly discuss about dye sensitised solar cells.

SECTION-C

Answer any 2 questions. Each question carries 8 marks

- 21. Write note on Photoinduced electron transfer (PET) in molecular systems. How can we make use of PET in designing molecular sensors?
- 22. i) Illustrate and explain various radiative and non-radiative transitions in molecular systems with the help of Jablonski diagram.
 ii) Explain the principle and instrumentation of Transient observation spectroscopy.

ii) Explain the principle and instrumentation of Transient absorption spectroscopy.

(4 + 4)

- 23. Discuss the photochemistry of metal-ligand complexes. Exemplify their use in solar water splitting.
- 24. i) Illustrate the instrumentation of steady-state fluorescence spectroscopy.
- ii) Illustrate the light-dependent reactions in natural photosynthesis.

(4 + 4)

1.	Semester 3					
2.	Cours	e Title	Functional Soft Materials			
3.	Cours	e Code	CHE-DE-539 A			
4.	Credit	ts	3			
5.	CO			TL	KL	PSO
			the course, students should be able to:			No.
	1. Ide	ntify the rol	e of self assembly	I-R, 2- Un	FK, CK	I, II
		-	various factors associated with stimuli	2-Un, 4-	FK,	II, III
		nsive materi		An	CK	T T
	3. 10	comprehend	l the role of liquid crystals	2-Un, 4- An	FK	I, II
	4. To	analyze and	apply the supramolecular networks	3-Ap, 4- An	FK, CK	I, II
	5 To	understand	the role of smart materials	I-R, 2-	FK,	III, VI
	5.10		the fole of smart materials	Un	CK	111, VI
MO No	DULE	COURSE	CONTENT		CON	lo.
I		Self-assen	ably		1	
			ent interactions and thermodynamic paramet			
			Self-assembled biopolymers: Proteins and			
			bly in Tobacco mosaic virus and DNA, b			
		^	naterials via multi-step self-assembly, multi-	.		
			based on small molecules and polymers, n			
			and macroscopic self-assembly, Supra			
			Micelles, layers, vesicles and other ordered a	nggregates,		
		surface self-assembled monolayers (SAM).			2	
II		Stimuli-responsive materials				
		Molecular switches – electrochemical, photochemical,				
		thermoche	mical, pressure and pH-based	switching.		
		Multifunct	tional diaryl ethenes, Photoswitchable	molecular		
		systems b	ased on Spiropyrans and Spirooxazines.	Chiroptical		
		Molecular	Switches, multifunctional-molecular level	systems -		
		photochro	mic flavylium compounds, nucleic-acid based	d switches,		
		cyclodextr	in based switches, solution and conden	sed phase		
		switching.				
III		Liquid cr			3	
			order and its implications, nature and st			
			stals. Thermo and lyotropic liquid crystals. I			
			zation of liquid crystalline materials, polym			
			ferroelectric liquid crystals, supramolecu			
117			pplications of liquid crystals (displays and ser	isors).	2.4	
IV		-	lecular polymer networks and gels		3, 4	
		-	ecular polymer networks – preparation,			
			tial, Hydrogen bonding in supramolecula			
		networks,	, self-healing hydrogels formed via hydrogels	drophobic		
			ns, supramolecular polymer hydrogels,			
			nicrogels, living supramolecular polymer			
V			lecular catalysis		3, 4	
v		Supramo	necular catalysis		5,4	

	Catalysis by reactive macrocyclic cation receptor molecules -crown ethers, Catalysis by reactive anion receptor molecules – corands and cryptands, Metallocatalysis using cyclodextrins, calixarenes, cyclophanes, porphyrins, Catalysis of synthetic reactions, Biomolecular and abiotic catalysis, Photocatalysis, Artificial photosynthesis.	
VI	Smart materials General Introduction to Smart Materials, piezoelectric materials, piezoresistive Materials as Smart Sensors, Giant Magnetoresistive (GMR) Materials, Magnetic Gels, Dielectric Elastomers, Shape Memory Alloys (SMAs), Shape Memory Polymers (SMPs) as Smart Materials, Smart Materials for Controlled Drug Release, Self-healing Materials, Smart ionic liquids and conductive polymers, smart materials as sensors and actuators.	5

References

- Supramolecular chemistry: Concepts and Perspectives, Jean Marie Lehn, Wiley-VCH, 2014.
- Supramolecular chemistry, Jonathan W. Steed and Jerry L. Atwood, Wiley 2nded, 2017.
- Molecular Switches, Ben L. Feringa, Wesley R. Browne, Wiley-VCH, 2011.
- Supramolecular Polymer Networks and Gels, Sebastian Seiffert, SpringerLink, 2015.
- Fundamentals of smart materials, Mohsen Shahinpoor, RSC, 2020.

Further Reading

- Introduction to Supramolecular Chemistry, Helena Dodziuk, Springer, 2002.
- Advances in Controlled and Novel Drug Delivery, 1st edition, 2001, Jain N. K., CBS Publications, New Delhi.
- Supramolecular chemistry, F. Vögtle, John Wiley and Sons, 1993.

FIRST SEMESTER M.Sc. DEGREE EXAMINATION

Branch: CHEMISTRY

CHE-DE-539 A FUNCTIONAL SOFT MATERIALS

Time: 3 hours

Max. Marks: 60

SECTION-A

Answer **any 10** questions. **Each** question carries **2** marks

- 1. What is a supermolecule? What are the criterias of a supermolecule to be chiral?
- 2. Define the term supramolecular self- assembly.
- 3. What are foldamers?
- 4. What are Molecular switches? Give an example.
- 5. What are liquid crystals? Give an example of a Thermotropic liquid crystal.
- 6. What are self-healing hydrogels?

- 7. Define conjugated polymers. Give any two applications of conjugated polymers.
- 8. Describe briefly on living supramolecular polymerization.
- 9. Write a short note on Artificial photosynthesis?
- 10. What are Dielectric Elastomers? Give an example.
- 11. What are Shape Memory Alloys (SMAs)?
- 12. Define ionic liquids.

SECTION-B

Answer any 6 questions. Each question carries 4 marks

- 13. Comment on the self -assembly in Tobacco mosaic virus and DNA.
- 14. Discuss about surface self-assembled monolayers (SAM) with examples.
- 15. Explain briefly on crown anthracene based molecular switches.
- 16. Comment on Photoswitchable molecular systems based on Spiropyrans and Spirooxazines.
- 17. Write a short note on polymeric liquid crystals.
- 18. Explain briefly on abiotic supramolecular catalysis.
- 19. How smart materials help in controlled drug release?
- 20. What are Giant Magnetoresistive (GMR) Materials. Explain.

SECTION-C

Answer any 2 questions. Each question carries 8 marks

- 21. What are Molecular switches? Comment on the different types of Molecular switches.
- 22. How will you design and characterize different types of liquid crystalline materials? What are the applications of liquid crystals?
- 23. What do you meant by supramolecular catalysis? Discuss briefly on catalysis by reactive macrocyclic cation receptor and anion receptor molecules.
- 24. What are piezoelectric materials? How piezoresistive materials act as smart sensors?

FOURTH SEMESTER

1.	Seme	ster	4				
2.	Cours	e Title	COMPREHENSIVE VIVA	COMPREHENSIVE VIVA			
3.	Cours	e Code	CHE-CC-541				
4.	Credit	ts	2				
5.	CO			TL	KL	PSO No.	
	With	this, the stude	nt should be able to				
	1. Do	a compreher	sive revision of the topics studied so far in the	4-An,5-	CK	III, VII,	
	progra	amme		Е		VIII	
	2. Get	trained to atte	end an interview-mode examination	4-An,	MK	III,	
				5-E		VII,VIII	
		COURSE C	CONTENT			CO No.	
Co	omprehe	ensive viva wi	ll include various topics of the core courses studied	in the first	three s	semesters	
1.	1. Semester 4						

1.	Semester	4			
2.	Course Title	DISSERTATION			
3.	Course Code	CHE-CC-542			
4.	Credits	14			
5.	СО		TL	KL	PSO No.
	With this, the studen	t should be able to			
	1. Conduct a literatu	re survey	3-Ар,	РК	VI,
			5-E		VII,VIII
	2. Design and exe	ecute small reaction schemes to synthesize	5-E, 6-C	PK,	VI,VII,VIII
	functional materials			MK	
	3. Independently wr	3. Independently write scientific reports			VII, VIII
	4. Communicate thre	ough various forms of presentation	3-Ар	СК	VIII

2.	Course Title		APPLIED CHEMISTRY			
3.		e Code	CHE-DE-543			
4.	Credit	S	3	1	1	1
5.	CO			TL	KL	PSO
		-	he course, students should be able to:	1 D		No.
	1. Un	derstand vari	ious chemical industry processes	1-R, 2-Un,	FK, CK	I, II
	2. To	appreciate th	e role of chemistry in day-to-day human life	2-Un,	FK, CK	I, II, III
		TT		3-Ap	7 -	7 7
				4-An		
	3. To apply chemistry principles in industry and chemical engineering3-Ap, 5-E				CK, PK	I, III
MOI No	IODULE COURSE CONTENT				CO No.	
I					1, 3	
	Corrosion and Protective Coatings - Corrosion and its Control: Nernst Theory, Standard Electrode Potential, Galvanic Series, Concentration cell, Types of corrosion: Uniform and Galvanic, Erosion, Crevice, Pitting, Exfoliation and Selective leaching, Inter-angular Stress, Waterline, Soil, Microbiological. Theories of corrosion: Acid, Direct Chemical attack, Electrochemical, Corrosion reactions, Factors affecting corrosion, Protective measures against corrosion, Sacrificial anode, and impressed current cathode protection. Protective Coatings: Paints: Constituents, functions & mechanism of drying. Varnishes and Lacquers; surface preparation for metallic coatings, electroplating (gold) and electroless plating (Nickel), anodizing, phosphate coating, powder coating & antifouling coating.					
III		preparation raw materi engineering glass. Refra good refrac Flow sheet	organic Chemistry - Introduction to chemical industry: Fl- Principles of process selection and operation selection als and routes to major inorganic products. Flow sho aspects of the manufacture of sulfuric acid, ammon actories: Definition, Classification with examples; Crite extory material; Causes for the failure of a Refractory I and engineering aspect of the manufacture of Refractorie	n. Basic eets and ia, urea, eria of a Material. s.	1,3	
IV		and engine process par	ement: Manufacture of cement, Dry and Wet process, Fle ering aspect of the manufacture of Portland cement, In ameters for manufacturing a good cement clinker. Charac- itutional compounds of cement. Additives for cement, Pr	mportant cteristics	1, 3	

	General composition, testing of cement, Chemical & physical requirement.	
V	 Applied Organic Chemistry - Raw materials and routes to major organic products. Flow sheets and engineering aspects of the manufacture of important products such as nitrobenzene, vinyl chloride, soaps, detergents and hydrogenation of oils. Pharmaceuticals: manufacturing process of aspirin, vitamin A and paracetamol. Pesticides: manufacture of BHC, DDT, Carbaryl and Malathion. Manufacture of dyes. Cosmetics: Talcum Powder, Tooth pastes, Shampoos, Nail Polish, Perfumes, soaps, and detergents - General formulations and preparation - possible hazards of cosmetics use. Adulterants: Adulterants in milk, ghee, oil, coffee powder, tea, asafoetida, chilli powder, pulses and turmeric powder - identification. Color chemicals used in food-soft drinks and its health hazards. 	1,3
VI	Polymer Chemistry - Polymers: Types of Polymerization. Thermoplastics & thermosetting polymers. Preparation, properties and applications of the Polyethylene, Teflon, PVC, Nylon, Phenol formaldehyde & Urea Formaldehyde. Silicone resins, silicone fluids, silicone greases. Polyurethanes, foamed or cellular plastics. Elastomers: Natural rubber, Vulcanization of rubber & Synthetic rubber.	1,2,3

REFERENCES

- Baird, C "Environmental Chemistry", Publisher WH Freeman, 2008
- Kulkarni, V & Ramachandran, T V" Environmental Management", Teri Press, New Delhi, 2009.
- Kumar, R & Singh, R N "Muncipal water and waste water treatment", Teri Press, 2008
- Patwardhan, I A.D "industrial Solid Wastes", Teri Press, New Delhi, 2012
- Varashney, C.K. "Water pollution and management", Wiley Eastern Ltd., Chennai 20.

ADDITIONAL REFERENCES

- Bagavathi Sundari K., "Applied chemistry", MJP Publishers.
- Charles E.Dridens, "Outline of Chemical Technology", East-West Press Publishing, 1973.
- De, A .K. "Environmental Chemistry"
- Ghosh, Jayashree "Fundamental concepts of applied chemistry", S.Chand & Co Ltd., New Delhi.
- Meyer, L. Hoagland "Food chemistry", CBS publishes & distributors, 2004.
- Poucher, W.A. "Perfumes, Cosmetics and soaps", Vol 3, Springer, 2000.
- Sharma, B. K. "Industrial Chemistry", Goel publishing house, Meerut.
- Shreve R. Norris & Joseph A.Brink.Jr, "Chemical process industries", McGraw Hill, 1984.
- Srilakshmi, B. "Food Science", III Edition, New age international publishers, 2005.
- Wiseman, P. "Industrial Organic Chemistry", Elsevier Science Ltd, 1972.

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION 2020

Branch: CHEMISTRY

CHE-DE-543: APPLIED CHEMISTRY

Time: 3 hours

Max. Marks: 60

SECTION-A

Answer any 10 questions. Each question carries 2 marks

- 1. Differentiate between octane number and cetane number.
- 2. A furnace is heated by combusting a gaseous fuel of composition 29% CO₂, 9% CO₂, 16% H₂ and 46% N₂ with dry air. The Orsat analysis of products of combustion (POC) is 15% CO₂, 7% O₂ and 78% N₂. Calculate the volume of products of combustion (POC) at STP and at 1000 deg C.
- 3. What are the various types of corrosion?
- 4. Differentiate between electroplating and electroless plating.
- 5. What are the criteria for a good refractory material?
- 6. What are the common additives added in cements?
- 7. Depict the flowsheet for manufacture of sulphuric acid.
- 8. Differentiate between soaps and detergents chemically.
- 9. How is BHC and DDT manufactured?
- 10. What are the chief adulterants in milk and how are they determined?
- 11. How is Teflon manufactured? What are its applications?
- 12. Discuss monomers for polyurethane synthesis.

SECTION-B

Answer **any 6** questions. **Each** question carries **4** marks

- 13. Discuss the process of rubber vulcanization and its importance.
- 14. How is paracetamol and Vitamin A synthesized in lab?
- 15. Differentiate between thermoplastics and thermosetting plastics giving applications for both.
- 16. Discuss the dry and wet processes for cement manufacture.
- 17. Explain the factors causing corrosion and prevention strategies.
- 18. How is glass manufactured industrially? Explain using a flow chart.
- 19. What is meant by hydrodynamic lubrication? Give examples.
- 20. A natural gas analysing 85% CH₄, 5% C_2H_6 and 10% N_2 with air such that percent oxygen in POC remains at 2% on dry basis. Assume complete combustion, calculate (a) analysis of POC (dry basis), and (b) % excess air.

SECTION-C

Answer any 2 questions. Each question carries 8 marks

- 21. Depict a diagram for the bomb calorimeter. Explain its principle, working and application.
- 22. Estimate the redox potential of a natural water that is in equilibrium with the atmosphere at pH 7 and 298 K. What fraction of a dilute solution Fe^{2+} will be in its oxidized form Fe^{3+} in such a water? The relevant E°s are 1.23V for O₂ (g) + 4H⁺ + 4e \rightarrow 2H₂O and 0.77V for the Fe³⁺/Fe²⁺ couple.
- 23. Why is hydrogenation of oil important? Explain the process, give example and application.
- 24. Discuss the synthesis of nylon, phenol-formaldehyde, urea-formaldehyde and silicone resin.

	Semester	4				
	Course Title	ANALYTICAL AND INSTRUMENTAL METHODS				
	Course Code	СНЕ-DЕ- 544				
	Credits	3				
	CO: On completion	on of the course, students should be able to:	TL	KL	PSO No.	
		mplement the fundamentals of data analysis ocedures involved in environmental quality	2-Un, 3- Ap	FK PK	PSO1 PSO2 PSO4	
	2. Describe and c chromatographic t	lassify principles and theory behind various echniques.	2-Un	FK CK PK	PSO1 PSO4	
		nonstrate the theory, principle and of various analytical and spectroscopic	2-Un, 3- AP	CK PK	PSO1 PSO4	
	4. Explain the base analysis method	ic principles and instrumentation of radiation ds	2-Un	FK CK	PSO1 PSO2 PSO4	
	-	mpare the principle, instrumentation and hermal, electro and surface analysis	2-Un, 4- An	FK CK PK	PSO1 PSO4	
MOD . No	COURSE CONT	ΓΕΝΤ			CO No.	
Ι	Accuracy and pr median. Standar Classification of computations. Sta suspected value, environmental mo nitrate, iron, fluor exchange capacit pollutants. sampli and SPM. Prin	Data Analysis and Procedures Involved in Environmental Analysis: Accuracy and precision. Evaluation of analytical data, The mean and median. Standard deviation, variance and coefficient of variation. Classification of errors. Minimization of errors. Significant figures and computations. Statistical methods in analysis. Students T test, Rejection of suspected value, Q test. Analytical procedures involved in the environmental monitoring of water quality- BOD, COD, DO, nitrite and nitrate, iron, fluoride, soil moisture, salinity, soil colloids, cation and anion exchange capacity. Air pollution monitoring: Control measures for air pollutants. sampling and collection of air pollutants-SO2, NO2, NH3, O3, and SPM. Principle of the analysis of milk and starch based food materials, Analysis of drugs, oils and fats.			CO1	

П	Chromatographic Methods : Principles, instrumentation and applications of column chromatography, paper chromatography, thin layer chromatography, ion-exchange chromatography, Gas chromatography and HPLC. Detectors, Hyphenated techniques, Capillary Electrophoresis, Introduction to Chiral Chromatography, Molecular Exclusion Chromatography, Affinity Chromatography. Introduction to Method development and analysis of samples using the above techniques.	CO2
Ш	Introduction to Instrumental Methods : Electrical and nonelectrical data domains-transducers and sensors, detectors, examples for piezoelectric, pyroelectric, photoelectric, pneumatic and thermal transducers. Criteria for selecting instrumental methods precision, sensitivity, selectivity, and detection limits. Signals and noise: sources of noise, S/N ratio, methods of enhancing S/N ratio– hardware and software methods. Electronics: transistors, FET, MOSFET, ICs, OPAMs. Application of OPAM in amplification and measurement of transducer signals.	CO3
IV	Radiation Analysis Methods: Measurement of radioactivity. Detection counters. Ionization chamber, Cloud chamber, Bubble chamber, Proportional counter, Geiger counter, Scintillation counters, Neutron activation analysis. Isotope dilution methods. Introduction to Positron emission Tomography, Working of nuclear reactors.	CO3, CO4
V	Thermal, Electro and Surface Analysis Methods : Principles, instrumentation and applications of thermogravimetry (TG), derivative thermogravimetry (DTG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Analysis of samples using the above instruments- Principles, instrumentation and applications of Electrogravimetry, Coulometry, Polarography, Amperometry, Cyclic voltametry, Potentiometry and Conductometry. Analysis of samples using the above instruments. Introduction to SEM, TEM, AFM and other surface characterization techniques.	CO3, CO5
VI	Fundamentals of Spectrochemical Methods: Spectrophotometers - Sources of Light , Lamp and lasers, Monochromators, Detectors- PMT, Photodiode array, Charge coupled device, Infrared Detectors, Optical Sensors, Dealing with noise- Signal Averaging, Types of Noises, Fourier transformation in infrared Spectroscopy and NMR, Michelson interferometer, Instrumentation of UV-Vis, IR, Fluorescence Spectrometer Atomic Spectrometry- Atomization, Flames, furnaces and plasmas, Temperature Effects on Atomic spectroscopy, Inductively coupled Plasmas, Hollow Cathode Lamp, Interferences, Isobaric Interference Back ground Correction techniques, Mass Spectrometery, Ionization Methods Types of Mass Spectrometer, Quadrupole Spectrometer, Time of Flight, Orbitrap, Ion Mobility Mass Spectrometer Chromatography Mass Spectrometry Hyphenated methods, Introduction to ICPMS, XPS.	CO3

1. Harris, D. C "Quantitative Chemical Analysis", 8th Edition, 2010, WH Freeman and Company, New York.

- 2. Hatakeyama, T. and Quinn, F. X. "Thermal Analysis", John Wiley&Sons, 1999.
- 3. Settle, F. A., "Handbook of Instrumental Techniques for Analytical Chemistry", Pearson
- 4. Skoog, D. A. West, D. M. and Holler, F. J. "Fundamentals of Analytical Chemistry", 9th Edition, 2014 Saunders
- 5. Vogel, I. "A Textbook of quantitative Inorganic Analysis", 5th Edition 1989, Longman.
- 6. Wendladt, W.W. Thermal Methods of Analysis, Interscience, 1964.
- 7. Willard, L. L., Merit H. H. and Dean, J. A. "Instrumental Methods of Analysis", Affiliated East-West 5th Edn., Van Nostrand, 1974.
- 8. Farhataziz and Rodgers, M. A. J. Radiation Chemistry: Principles and Applications VCH Publishers, New York (1987).
- 9. Arnikar, H. J "Essentials of Nuclear Chemistry", Wiley Eastern Limited, 4th Edition.(1995)

Christian, G. D. O'Reilly, J. E. Instrumental Analysis, Allyn&Bacon, 1986.

Additional references:

- 1. Day, R.A and Underwood, A. L. Quantitative Analysis, Prentice Hall, 1967.
- 2. Ehmann, W. D. and Vance, D. E Radiochemistry and Nuclear methods of analysis, John Wiley (1991)
- 3. Fifield, F.W. Kealey, D. Principles and Practice of Analytical Chemistry, Blackwell
- 4. Friedlander, G. Kennedy J. W. and Miller J. M. Nuclear and Radiochemistry, John Wiley (1981)
- 5. Kennedy, J. H. Analytical Chemistry: Principles, Saunders College Pub., 1990.
- 6. Kolasinski, K.W. Surface Science: Foundations of Catalysis and Nanoscience, 2nd Edn., Wiley, 2009.
- 7. Mermet, J. Otto, M. Kellner, M. R. Analytical chemistry, Wiley-VCH, 2004.
- 8. Wilson, C. L. Wilson, D. W. Comprehensive Analytical Chemistry, Elsevier, 1982.

Model Question Paper

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION 2020

Branch: CHEMISTRY

CHE-DE-544: ANALYTICAL AND INSTRUMENTAL METHODS

Time: 3 hours

Max. Marks: 60

SECTION-A

- 1. Write down significant figures of i)0.0009 Kg $\,$ ii) 9.50 mm iii) 85000 $\,$ iv) 4.5600 X 10^4
- 2. Plot a titration curve for the titration between a strong acid *vs* strong base. Which indicator can be used for this titration?
- 3. Explain a method to separate polymers according to their size.
- 4. How can two stereoisomers of a compound be separated?
- 5. Enumerate the methods to improve S/N ratio while handling instruments.
- 6. Why are FETs also known as unipolar transistors?
- 7. What is the principle of neutron activation analysis?
- 8. How does positron emission tomography work?

- 9. Depict a cyclic voltammogram and explain completely.
- 10. What is meant by fourier transformation in IR or NMR?
- 11. Explain MALDI and FAB mass techniques.
- 12. Differentiate between DSC and DTA.

SECTION-B

Answer any 6 questions. Each question carries 4 marks

13. What is meant by distribution of random errors? Explain

- 14. Discuss the principle and application of any one electrokinetic separation method.
- 15. What technique is used to determine polydispersity indices?
- 16. What are hyphenated techniques? Give the principle of any two.
- 17. What are the techniques to measure radioactivity?
- 18. Explain the difference between SEM and TEM.
- 19. What are the different types of optical sensors and what are their applications?
- 20. What are the temperature effects on atomic spectroscopy in general?

SECTION-C

- 21. Explain various ways to minimize the errors encountered during an analysis.
- 22. Explain the various thermoanalytical techniques that can be used to study the thermal properties of a material.
- 23. Explain the working of nuclear fission and fusion reactors.
- 24. Compare the techniques EDX, XPS, AAS and ICPMS.

Generic Course offered by department:

1.	Seme	ster	1				
2.		e Title					
3.	Course Code CHE-GC-501						
4.	Credit	S	2	T	1		
5.	CO:			TL	KL	PSO No	
		On completion of the course, students should be able to:					
	1. Uno	derstand the	basics of data analysis and titrations	1-R, 2-Un, 3-Ap	FK, CK	1, 11	
	2. To understand		he practice of titrations and volumetry	2-Un, 3-Ap 4-An	FK, CK	1, 11, 111	
		•	ne theory of chromatography and understand the atographic methods	1-R, 2-Un	FK, CK	1, 111	
	4. To know the scie		ence behind the various environment phenomena e effect, acid rain etc	2-Un, 5-E	FK, CK	1, 11, 111	
			various types of pollution	2-Un, 3-Ap	FK, CK	,	
			solid waste management issues	2-Un, 3-Ap	СК		
MODULE No.		COURSE CONTENT			CO No.		
		mean and median. Standard deviation, variance and coefficient of variation. Classification of errors. Minimization of errors. Significant figures and computations. Statistical methods in analysis. Students T test, Rejection of suspected value, Q test.					
II		Volumetric Analysis and Precipitation Methods - Classification of reactions in volumetry (titrimetry). Acid-base equilibria in water. Buffers. Titration curves. Theories of indicators. Theory of complexometric titrations and applications, Solubility product. Common ion effect. Super saturation and precipitate formation. Precipitation from homogeneous solutions. The purity of precipitate. Co-precipitation and post precipitation. Contamination of precipitates. Washing of precipitate. Ignition of precipitate. Organic reagents used in gravimetry			1, 2		
	111	Chromatog column chromatog HPLC. De Chromatog	raphic Methods: Principles, instrumentation and a chromatography, paper chromatography, raphy, ion-exchange chromatography, Gas chroma tectors, Hyphenated techniques, Introduction graphy, Molecular Exclusion Chromatography, Int evelopment and Analysis of samples using the above	thinlayer tography and to Chiral croduction to	er nd al to		
IV		Earth's at depletion,	on to Environmental Chemistry - Components of mosphere, Stratosphere chemistry, Ozone fo Protection of ozone layer, Chlorofluorocarbons, nical smog, Acid rain, Atmospheric production c	rmation and Chemistry of	4		

	sulphuric acid, Rain, snow and fog chemistry, Aerosols, Adverse effects of	
	acid rain, Green house effect. Impact of greenhouse effect on global	
	climate.	
V	Air and Water Pollution - Air pollution incidents. Control measures for air	5
	pollution. Water pollution, Incidents of water pollution in India – examples	
	- causes, effects and remedial measures, Case studies, Humic material,	
	Metal complexes of ligands of anthropogenic origin, Soaps and detergents.	
	Eutrophication.	
VI	Solid Waste Management - Heavy metals. Industrial waste water	6
	treatment: Solid wastes from mining and metal production, Organic wastes,	
	Mixed urban wastes, Solid waste management, Pollutants in soil.	
	Radioactive pollutants. Pollutants from industries and agriculture. Chemical	
	toxicology. Biochemical effects of pesticides and heavy metals.	
References	5:	L
	iley, R. A. Clark, H. M. Perris, J. P. Krause, S. and Strong, R. L.	"Chemistry of th
	vironment", Academic.	
	, A. K. "Environmental Chemistry", Wiley Eastern.	
	anjooran,K. B. "Modern Engineering Chemistry", Kannatheri Publications, Kochi. Dog,D. A. West, D. M. and Holler,F. J. "Fundamentals of Analytical Chemistry", Sa	unders
	dhi,G. S. "Fundamental Concepts of Environmental Chemistry", Narosa.	
	n Loon, G. W. "Environmental Chemistry", OUP.	
	gel, I. "A Textbook of Quantitative Inorganic Analysis", Longman.	

- 7. Vogel, I. "A Textbook of Quantitative Inorganic Analysis", Longman.
- 8. Wilson, C. L. and Wilson, D. W. "Comprehensive Analytical Chemistry", Vol. IB

Model Question Paper

FIRST SEMESTER M.Sc. DEGREE EXAMINATION 2020

Branch: CHEMISTRY

CHE-GC-501: ANALYTICAL AND ENVIRONMENTAL CHEMISTRY

Time: 3 hours

Max. Marks: 60

SECTION-A

- 1. Write down significant figures of i)0.0009 Kg $\,$ ii) 9.50 mm iii) 85000 $\,$ iv) 4.5600 X 10^4
- 2. Calculate the mean and median for the data: 17.4; 17.5; 17.6; 17.8; 18.1; 18.3
- 3. Exemplify the concept of common ion effect.

- 4. Plot a titration curve for the titration between a strong acid *vs* strong base. Which indicator can be used for this titration?
- 5. Explain a method to separate polymers according to their size.
- 6. How can two stereoisomers of a compound be separated?
- 7. Explain the photochemical smog phenomenon.
- 8. What are the chief greenhouse gases present in our atmosphere?
- 9. What are the control measures for air pollution?
- 10. Differentiate between soaps and detergents
- 11. What are the main sources of heavy metal pollution?
- 12. Explain the term "chemical toxicology".

SECTION-B

Answer any 6 questions. Each question carries 4 marks

- 13. What is meant by distribution of random errors? Explain.
- 14. Write a note on any three organic reagents used in gravimetry.
- 15. Briefly mention the theory of acid-base indicator.
- 16. What are hyphenated techniques? Give the principle of any two.
- 17. How can thin layer chromatography be carried out? Explain.
- 18. Explain how ozone is formed and decomposed in the atmosphere.
- 19. What are the causes, effects and remedial measures for water pollution?
- 20. What are the major solid waste management strategies?

SECTION-C

- 21.Explain various ways to minimize the errors encountered during an analysis.
- 22. What are the organic precipitants generally employed in gravimetry ? Discuss.
- 23. Explain greenhouse effect and acid rain.
- 24. Explain the biochemical effects of pesticides and heavy metals.

1.	Semes	Semester 1				
2.		Course Title Advanced Functional Materials				
3.	Cours	e Code	CHE-GC-1			
4.	Credit					
5.	CO			TL	KL	PSO
	On co	mpletion of	the course, students should be able to:			No.
	1. D	iscuss abou	it dendrimer synthesis, properties and	I-R, 2-	FK,	I, II
	applic			Un	СК	
		•	rpret the various functional oxides and their 2-U			II, III
	applic			An	CK	
					FK	I, II
	for biomedical app			Un	-	x x
	4. To	appreciate t	he role of biomaterials in medicine	2-Un, 3-	FK,	I, II
	<u>с</u> т	1 1	. 1	Ap	CK	
		· · ·	ctrochemistry principles to create energy	3-Ap, 4-	FK, CK	III, VI
MO	DULE		g and storage CONTENT	An	CON	In
No	DULE	COURSE	CONTENT			10.
I II III	Anionic, dendrimers chemical macromole pharmacok I Advanced multifuncti wolframite bixbyite n properties pressure, (vacancies Energy		s, Divergent and convergent methods of p and biological properties, dendrimers as ecules, application in supramolecular <u>inetic properties and biomedical applications</u> Functional Oxide materials: Functi onal materials, wurtzite, corundum, zircon, fluorite, spinel, garnet, perovskite, p naterials, Structure-property relationships, T using the variations in composition, te strain, external fields, defect kind an o, film orientation and nanoparticle size. Ap related materials, energy storage, cs, piezoelectrics, superconductors, mag	alities of reparation, s artificial chemistry, onal and , scheelite, pyrochlore, Funing the mperature, d density pplications: dielectrics, netic and	1	
III	biopolymen based and biodegrada functional associated Types of s enzyme res and mult application V Renewable		rs and biodegradable polymers, Sugar-base d Cellulose-based biopolymers, Classifi ble polymers, polymers with ester amide groups. Quality and sustainability rela with biopolymers for food packaging an smart polymers, temperature, pH, photo r sponsive and inflammation responsive polymers.	ed, Starch- cation of and ether ted issues oplications, responsive, mers, Dual biomedical plications al polymer	3, 4	

GENERIC ELECTIVES (OFFERED BY IUCAFM)

	Alginates – properties and applications, pectins, hyaluronate- properties and protein binding, Chitin and chitosan for drug delivery, beta-glucans, microbial polyesters, glycoproteins for biomaterial applications,	
V	Biomaterials: Introduction to biomaterials, structure and properties of biomaterials, use of metals and ceramic materials in biomedical applications, cardiovascular implant materials, biomaterials in ophthalmology, orthopaedic implants, dental materials	3, 4
VI	Electrochemical materials and sensors: Electrochemical materials for energy storage, Materials for negative electrodes, Ionic liquid materials, Electrochemical challenges, Electrochemical capacitors (ECs), Characteristics of electrode materials, Carbon- based materials, transition metal oxides and conducting polymers, composite of pseudocapacitive and carbonaceous materials for ECs, electrochemical probes, sensing applications, graphene-oxide based materials as platforms for sensing heavy metals, screen-printed electrochemical sensing platforms.	5

References

- Supramolecular chemistry, Jonathan W. Steed and Jerry L. Atwood, Wiley 2nd ed, 2017
- Maria Rosa Aguilar and Julio San Roman, "Smart Polymers and Their Applications": Second Edition, Woodhead/ Elsevier Publication, UK, 2019
- Peter A. Williams, "Renewable resources for functional polymers and biomaterials", RSC, 2011.
- William Wagner, Shelly Sakiyama-Elbert, Guigen Zhang, Michael Yaszemski (Eds), Biomaterials Science An introduction to materials in medicine, Elsevier, 2020
- Sujata V. Bhat. Biomaterials, Narosa Publishing house, 2002.
- Walfried Plieth, "Electrochemistry for Materials Science" First Edition, Elsevier Publication, Netherland, 2007

Further Reading

- V. Balzani, A. Credi, M.Venturi, "Molecular Devices and Machines: A Journey into the Nanoworld", Wiley-VCH Publication, Italy, 2003.
- F, W. Billmayer, JR. " A Text Book of Polymer Science" A Wiley-Interscience Publication, New York, 1984
- Dong-Sing Wuu, "Functional Oxide Based Thin-Film Materials" MDPI Publication, Switzerland, 2020.
- Masoud Mozafari, Narendra Pal Singh Chauhan, "Advanced Functional Polymers for Biomedical Applications", Elsevier, 2019.

FIRST SEMESTER M.Sc. DEGREE EXAMINATION

Branch: CHEMISTRY

CHE-GC-1 ADVANCED FUNCTIONAL MATERIALS

Time: 3 hours

Max. Marks: 60

SECTION-A

Answer any 10 questions. Each question carries 2 marks

- 1. Give 2 examples of commercially available dendrimers.
- 2. What are the important 2 approaches in dendrimer synthesis?
- 3. Explain the structure of bixbyite.
- 4. Give the general molecular formula of a perovskite and explain.
- 5. Differentiate between biopolymers and biodegradable polymers.
- 6. Explain the structure of starch.
- 7. Give the chemical composition of alginate.
- 8. Explain the stability of pectins.
- 9. What materials are used for contact lens fabrication?
- 10. How are dextrans useful as biomaterials?
- 11. What are electrochemical probes?
- 12. How is graphene-oxide used for sensing?

SECTION-B

Answer any 6 questions. Each question carries 4 marks

- 13. How can molecular imprinting be done in dendrimers?
- 14. Give an example and explain a dendrimer-based gel.
- 15. Explain energy storage using functional oxide materials.
- 16. What are spintronic materials? Give example.
- 17. Explain the structure of hyaluronic acid.
- 18. Explain drug delivery using chitosan.
- 19. Give examples of biomaterials used for ortho ailments.
- 20. What are electrochemical capacitors. Explain.

SECTION-C

- 21 Give examples of supramolecular dendrimer assemblies and applications.
- 22. Give an account of various biomaterials used in biomedical industry.
- 23. How are electrochemical probes designed? Explain design and application.
- 24 Explain the role of cellulose for medical applications.

Fo under risation & o in knowled now metho esign Mole know rec meric mem	Advanced Polymer Chemistry CHE-GC-2 2 the course, students should be able to: stand polymers, their classification, basics of copolymers dge on new polymerisation techniques ds for the characterisation polymer materials cular imprinted polymers for suitable applications ent developments in the areas of supramolecular, branes & fibre technology. CONTENT CONTENT	TL 1-R, 2-Un 2-Ap, 4-An 1-R, 2-Un 2-Un, 3-Ap 3-Ap, 4- An	KL FK, CK FK, CK FK, CK FK, CK FK, CK	PSO No. I, III I, II, III II, IV II, III II, III	
pletion of Fo under risation & o in knowled now metho esign Mole know rec meric mem	2 the course, students should be able to: stand polymers, their classification, basics of copolymers dge on new polymerisation techniques ds for the characterisation polymer materials cular imprinted polymers for suitable applications ent developments in the areas of supramolecular, ibranes & fibre technology.	1-R, 2-Un 2-Ap, 4-An 1-R, 2-Un 2-Un, 3-Ap 3-Ap, 4-	FK, CK FK, CK FK, CK FK, CK FK, CK	No. I, III I, II, II, III I, IV	
Fo under risation & o in knowled now metho esign Mole know rec meric mem	the course, students should be able to: stand polymers, their classification, basics of copolymers dge on new polymerisation techniques ds for the characterisation polymer materials cular imprinted polymers for suitable applications ent developments in the areas of supramolecular, ibranes & fibre technology.	1-R, 2-Un 2-Ap, 4-An 1-R, 2-Un 2-Un, 3-Ap 3-Ap, 4-	FK, CK FK, CK FK, CK FK, CK FK, CK	No. I, III I, II, II, III I, IV	
Fo under risation & o in knowled now metho esign Mole know rec meric mem	stand polymers, their classification, basics of copolymers dge on new polymerisation techniques ds for the characterisation polymer materials cular imprinted polymers for suitable applications ent developments in the areas of supramolecular, ibranes & fibre technology.	1-R, 2-Un 2-Ap, 4-An 1-R, 2-Un 2-Un, 3-Ap 3-Ap, 4-	FK, CK FK, CK FK, CK FK, CK FK, CK	No. I, III I, II, II, III I, IV	
Fo under risation & o in knowled now metho esign Mole know rec meric mem	stand polymers, their classification, basics of copolymers dge on new polymerisation techniques ds for the characterisation polymer materials cular imprinted polymers for suitable applications ent developments in the areas of supramolecular, ibranes & fibre technology.	2-Ap, 4-An 1-R, 2-Un 2-Un, 3-Ap 3-Ap, 4-	FK, CK FK, CK FK, CK FK, CK	I, III I, II, III I, IV II, III	
risation & d in knowled now metho esign Mole know rec meric mem	copolymers dge on new polymerisation techniques ds for the characterisation polymer materials cular imprinted polymers for suitable applications ent developments in the areas of supramolecular, ibranes & fibre technology. CONTENT	2-Ap, 4-An 1-R, 2-Un 2-Un, 3-Ap 3-Ap, 4-	FK, CK FK, CK FK, CK FK, CK	I, II, III I, IV II, III	
now metho esign Mole know rec meric mem	ds for the characterisation polymer materials cular imprinted polymers for suitable applications ent developments in the areas of supramolecular, ibranes & fibre technology.	1-R, 2-Un 2-Un, 3-Ap 3-Ap, 4-	FK, CK FK, CK FK, CK	III I, IV II, III	
esign Mole know rec meric mem	cular imprinted polymers for suitable applications ent developments in the areas of supramolecular, branes & fibre technology.	2-Un, 3-Ap 3-Ap, 4-	FK, CK FK, CK	II, III	
know rec meric mem	ent developments in the areas of supramolecular, ubranes & fibre technology.	3-Ap, 4-	FK, CK		
meric mem	branes & fibre technology.	^		II, III	
			CO No.		
Rasics of D	alymorization			L	
Rasice of D	alymatication				
Jasits UL F	orymerisation	Basics of Polymerisation			
polymerisation – Polycondensation, polyaddition and ring opening polymerisation. Kinetics and mechanism of step growth, free radical, cationic and anionic polymerizations. Copolymers, Types of copolymers. Stereoregular polymers. Copolymerisation, The co-polymer equation. Kinetics of co- polymerisation. Monomer reactivity ratio, Q-e scheme.					
Special types of polymerization - Electrochemical, metathetical & group transfer polymerisations. Reversible addition–fragmentation chain-transfer polymerization, Atom transfer radical & Ring Opening Metathesis polymerisation. Types of Polymerisation techniques - Bulk, solution, suspension and emulsion polymerisations. Melt, solution and interfacial polycondensation techniques.			2		
Properties, thermodynamics & characterisation of polymers			3		
Molecular osmometry	raphy (GPC). Solution viscosity - Intrinsic viscosity, Det verage molecular weight, Mark-Howink equation, deter	Vapour phase permeation ermination of mination of k			
osn	nometry omatogr cosity av a.	nometry, Light scattering, Ultracentrifugation, Gel comatography (GPC). Solution viscosity - Intrinsic viscosity, Det cosity average molecular weight, Mark-Howink equation, deter a. ymer crystallization, lamellar and spherulite morphology, po ss transition temperature - Factors influencing glass transition	nometry, Light scattering, Ultracentrifugation, Gel permeation omatography (GPC). Solution viscosity - Intrinsic viscosity, Determination of cosity average molecular weight, Mark-Howink equation, determination of k	hometry, Light scattering, Ultracentrifugation, Gel permeation omatography (GPC). Solution viscosity - Intrinsic viscosity, Determination of cosity average molecular weight, Mark-Howink equation, determination of k a. ymer crystallization, lamellar and spherulite morphology, polymorphism. ss transition temperature - Factors influencing glass transition temperature. sticizers. Relation between glass transition temperature, molecular weight &	

	 Thermodynamics of polymer solution - Entropy, enthalpy, and free energy of mixing. Lattice model-solubility parameter, Free volume theory, Excluded volume, Flory-Huggins Theory. Thermal & spectral analysis of structure, and configuration and stability of polymers using TGA, DSC, IR, NMR (¹H and ¹³C) and ESR, UV-VIS, Mass Spectrometry & Raman spectroscopy. 	
IV	Molecular imprinted polymers and their applications.	4
	Methods for Synthesis of Molecularly Imprinted Polymers - Covalent imprinting approach, Non-covalent imprinting approach, Semi-covalent imprinting approach, Molecular imprinting based on host-guest inclusion interaction. Criteria for selecting template molecules and functional monomers. Factors influencing the efficiency of imprinted polymers. Applications of Molecularly Imprinted Polymers in separation, sensors, drug delivery, catalysis.	
V	Polymeric fibres and membranes - Synthetic fibres - rayon, polyethylene terephthalate, nylon 6 and nylon 66. Fiber processing techniques - melt, wet and dry spinning, fiber drawing. Properties & applications. Introduction to membranes. Mechanism of separation in various types of membrane processes. Application of different polymers as membrane materials.	4, 5
VI	Functional Polymers - Conducting polymers - Doping, Types of conducting polymers. Mechanism of Conduction. Preparation, properties and applications of polyacetylene, polyaniline, polypyrrole, polythiophene, Poly(p-phenylene vinylene).	4, 5
	Liquid crystalline polymers - Types of LCPs - main chain, side chain, combined side chain- main chain liquid crystalline polymers. Factors influencing polymeric liquid crystalline materials. Liquid crystalline polymer networks, Liquid crystalline elastomers. Properties & Application.	
	Synthetic & Biopolymers – solid phase synthesis of polymers, Biomedical polymers, Biodegradable plastics, Polysaccharides, Cellulose, Regeneration of cellulose, Polylactic acid.	
	Supramolecular polymers - Co-ordination polymers, hydrogen bonded based polymers, guest included polymers, examples of stimuli responsive supramolecular polymers, self healing polymers. Applications.	

References

- Carraher, C.E. Seymour/Carraher's Polymer Chemistry, 7th ed., CRC Press, 2007.
- Odian, G. Principles of Polymerization, 4th ed., Wiley, 2004.
- Billmeyer, F.W. Textbook of Polymer Science, 3rd ed., Wiley-Blackwell, 1984.
- Gowariker, V.R., Viswanathan, N.V.; Sreedhar J. Polymer Science, 2nd ed., New Age, 2015.
- Painter, P.C. and Coleman, M.M. Essentials of polymer science and engineering. DEStech Publications, Inc., 2008
- Padma L Nayak, Polymer Science, Kalyani Publishers, New Delhi, 1st Edn., 2005.

Further Reading

- Mingdi Yan, Olof Ramstrom; Molecularly Imprinted Materials Science and Technology, CRC press,1st Edn., 2004
- Sajini, T. and Mathew, B., 2021. A brief overview of molecularly imprinted polymers: highlighting computational design, nano and photo-responsive imprinting. Talanta Open, 4, p.100072. <u>https://doi.org/10.1016/j.talo.2021.100072</u>.
- Manufactured fiber technology, VB Gupta and VK Kothari, Springer. 1997.
- Das, C. and Gebru, K.A., Polymeric Membrane Synthesis, Modification, and Applications: Electro-Spun and Phase Inverted Membranes. CRC Press. 2018.
- Supramolecular chemistry: Concepts and Perspectives, Jean Marie Lehn, Wiley-VCH, 2014.
- Supramolecular chemistry, Jonathan W. Steed and Jerry L. Atwood, Wiley 2nd ed, 2017.
- Principles and Methods in Supramolecular Chemistry: H.-J. Schneider and A.K. Yatsimirsky; John Wiley and Sons, Ltd. 2000.
- Supramolecular Polymers-2nd Edition, A. Ciferri Ed., CRC Press, Boca Raton, 2005.
- A. F. Diaz, K. Kanazawa, J. I. Castillo and J. A. Logan, Conducting polymers, Plenum,1st Edition, 1983.
- A. Blumstein, Liquid crystalline order in polymers, Academic; 1st Edition, 1978
- Recent Advances in Liquid Crystalline Polymers- L.L. Chapoy (Ed), Chapman and Hall, London, 1985.

Model Question Paper

FIRST SEMESTER M.Sc. DEGREE EXAMINATION Month Year Branch: CHEMISTRY

CHE-GC-2: Advanced Polymer Chemistry

Time: 3 hours

Max. Marks: 60

SECTION-A

- 1. Define Polydispersity index.
- 2. Differentiate between Initiators and Inhibitors.
- 3. Give the relation between glass transition temperature and molecular weight of a polymer.
- 4. What are plasticizers?
- 5. Write a short note on emulsion polymerization.
- 6. How NMR is useful in the determination of absolute configuration?
- 7. Write a short note on Q-e scheme.
- 8. Comment on polymorphism in polymers.

- 9. What are Polysaccharides?
- 10. What are Liquid crystalline elastomers? Give an example.
- 11. Write a short note on hydrogen bonded based polymers
- 12. Briefly explain Supramolecular polymers citing any two examples.

SECTION-B

Answer any 6 questions. Each question carries 4 marks

- 13. Explain the kinetics and mechanism of step growth polymerization.
- 14. Discuss in detail Reversible addition-fragmentation chain-transfer polymerization.
- 15. Write a short note on Gel permeation chromatography.
- 16. What is the mechanism of conducting in conjugated polymers? Explain the conducting mechanism of polyaniline.
- 17. What is Glass transition temperature? What are the factors influencing glass transition temperature?
- 18. Brief the principles of ESR and Raman spectroscopic techniques.
- 19. Brief the principles of TGA & DSC using examples.
- 20. Comment on factors influencing polymeric liquid crystalline materials.

SECTION-C

- 21. Describe the light scattering method for the determination of molar mass of polymers. Draw the Zimm plot.
- 22. What are molecular imprinted polymers? Discuss any two methods for their synthesis. What are the criterias adopted for selecting template molecules and functional monomers in MIP synthesis?
- 23. Derive Flory Huggins equation for the vapour pressure of a polymer solution.
- 24. Discuss solid phase synthesis of polymers.